

L e c t u r e N o t e s i n A r t i f i c i a l I n t e l l i g e n c e 1 9 6 8
S u b s e r i e s o f L e c t u r e N o t e s i n C o m p u t e r S c i e n c e
E d i t e d b y J . G . C a r b o n e l l a n d J . S i e k m a n n

L e c t u r e N o t e s i n C o m p u t e r S c i e n c e
E d i t e d b y G . G o o s , J . H a r t m a n i s a n d J . v a n L e e u w e n

3
B e r l i n
H e i d e l b e r g
N e w Y o r k
B a r c e l o n a
H o n g K o n g
L o n d o n
M i l a n
P a r i s
S i n g a p o r e
T o k y o

H i r o k i A r i m u r a S a n j a y J a i n
A r u n S h a r m a (E d s .)

A l g o r i t h m i c
L e a r n i n g T h e o r y

1 1 t h I n t e r n a t i o n a l C o n f e r e n c e , A L T 2 0 0 0
S y d n e y , A u s t r a l i a , D e c e m b e r 1 1 - 1 3 , 2 0 0 0
P r o c e e d i n g s

1 3

S e r i e s E d i t o r s

J a i m e G . C a r b o n e l l , C a r n e g i e M e l l o n U n i v e r s i t y , P i t t s b u r g h , P A , U S A
J ¨o r g S i e k m a n n , U n i v e r s i t y o f S a a r l a n d , S a a b r ¨u c k e n , G e r m a n y

V o l u m e E d i t o r s

H i r o k i A r i m u r a
K y u s h u U n i v e r s i t y , D e p a r t m e n t o f I n f o r m a t i c s
H a k o z a k i 6 - 1 0 - 1 , F u k u o k a 8 1 2 - 8 5 8 1 , J a p a n
E - m a i l : a r i m @ i . k y u s h u - u . a c . j p

S a n j a y J a i n
N a t i o n a l U n i v e r s i t y o f S i n g a p o r e , S c h o o l o f C o m p u t i n g
3 S c i e n c e D r i v e 2 , S i n g a p o r e 1 1 7 5 4 3 , S i n g a p o r e
E - m a i l : s a n j a y @ c o m p . n u s . e d u . s g

A r u n S h a r m a
T h e U n i v e r s i t y o f N e w S o u t h W a l e s
S c h o o l o f C o m p u t e r S c i e n c e a n d E n g i n e e r i n g
S y d n e y 2 0 5 2 , A u s t r a l i a
E - m a i l : a r u n @ c s e . u n s w . e d u . a u

C a t a l o g i n g - i n - P u b l i c a t i o n D a t a a p p l i e d f o r

D i e D e u t s c h e B i b l i o t h e k - C I P - E i n h e i t s a u f n a h m e

A l g o r i t h m i c l e a r n i n g t h e o r y : 1 1 t h i n t e r n a t i o n a l c o n f e r e n c e ;
p r o c e e d i n g s / A L T 2 0 0 0 , S y d n e y , A u s t r a l i a , D e c e m b e r 1 1 - 1 3 , 2 0 0 0 .
H i r o k i A r i m u r a . . . (e d .) . - B e r l i n ; H e i d e l b e r g ; N e w Y o r k ; B a r c e l o n a ;
H o n g K o n g ; L o n d o n ; M i l a n ; P a r i s ; S i n g a p o r e ; T o k y o : S p r i n g e r , 2 0 0 0
(L e c t u r e n o t e s i n c o m p u t e r s c i e n c e ; V o l . 1 9 6 8 : L e c t u r e n o t e s i n

a r t i fi c i a l i n t e l l i g e n c e) I S B N 3 - 5 4 0 - 4 1 2 3 7 - 9

C R S u b j e c t C l a s s i fi c a t i o n (1 9 9 8) : I . 2 . 6 , I . 2 . 3 , F . 1 , F . 2 , F . 4 . 1 , I . 7

I S B N 3 - 5 4 0 - 4 1 2 3 7 - 9 S p r i n g e r - V e r l a g B e r l i n H e i d e l b e r g N e w Y o r k

T h i s w o r k i s s u b j e c t t o c o p y r i g h t . A l l r i g h t s a r e r e s e r v e d , w h e t h e r t h e w h o l e o r p a r t o f t h e m a t e r i a l i s
c o n c e r n e d , s p e c i fi c a l l y t h e r i g h t s o f t r a n s l a t i o n , r e p r i n t i n g , r e - u s e o f i l l u s t r a t i o n s , r e c i t a t i o n , b r o a d c a s t i n g ,
r e p r o d u c t i o n o n m i c r o fi l m s o r i n a n y o t h e r w a y , a n d s t o r a g e i n d a t a b a n k s . D u p l i c a t i o n o f t h i s p u b l i c a t i o n
o r p a r t s t h e r e o f i s p e r m i t t e d o n l y u n d e r t h e p r o v i s i o n s o f t h e G e r m a n C o p y r i g h t L a w o f S e p t e m b e r 9 , 1 9 6 5 ,
i n i t s c u r r e n t v e r s i o n , a n d p e r m i s s i o n f o r u s e m u s t a l w a y s b e o b t a i n e d f r o m S p r i n g e r - V e r l a g . V i o l a t i o n s a r e
l i a b l e f o r p r o s e c u t i o n u n d e r t h e G e r m a n C o p y r i g h t L a w .

S p r i n g e r - V e r l a g B e r l i n H e i d e l b e r g N e w Y o r k
a m e m b e r o f B e r t e l s m a n n S p r i n g e r S c i e n c e + B u s i n e s s M e d i a G m b H
© S p r i n g e r - V e r l a g B e r l i n H e i d e l b e r g 2 0 0 0
P r i n t e d i n G e r m a n y

T y p e s e t t i n g : C a m e r a - r e a d y b y a u t h o r
P r i n t e d o n a c i d - f r e e p a p e r S P I N : 1 0 7 8 1 1 0 3 0 6 / 3 1 4 2 5 4 3 2 1 0

Preface

This volume contains all the papers presented at the Eleventh International Con-
ference on Algorithmic Learning Theory (ALT 2000) held at Coogee Holiday Inn,
Sydney, Australia, 11–13 December 2000. The conference was sponsored by the
School of Computer Science and Engineering, University of New South Wales,
and supported by the IFIP Working Group 1.4 on Computational Learning The-
ory and the Computer Science Association (CSA) of Australia.

In response to the call for papers 39 submissions were received on all aspects
of algorithmic learning theory. Out of these 22 papers were accepted for pre-
sentation by the program committee. In addition, there were three invited talks
by William Cohen (Whizbang Labs), Tom Dietterich (Oregon State Univeristy),
and Osamu Watanabe (Tokyo Institute of Technology).

This year’s conference is the last in the millenium and eleventh overall in the
ALT series. The first ALT workshop was held in Tokyo in 1990. It was merged
with the workshop on Analogical and Inductive Inference in 1994. The confer-
ence focuses on all areas related to algorithmic learning theory, including (but
not limited to) the design and analysis of learning algorithms, the theory of
machine learning, computational logic of/for machine discovery, inductive infer-
ence, learning via queries, new learning models, scientific discovery, learning by
analogy, artificial and biological neural networks, pattern recognition, statistical
learning, Bayesian/MDL estimation, inductive logic programming, data min-
ing and knowledge discovery, and application of learning to biological sequence
analysis. In the current conference there were papers from a variety of the above
areas, refelecting both the theoretical as well as practical aspects of learning.
The conference was collocated with Pacific Knowledge Acquisition Workshop
and Australian Machine Learning Workshop, thus providing interesting interac-
tion between the above communities.

The E. M. Gold Award is presented to the most outstanding paper by a
student author, selected by the program committee of the conference. This year’s
award was given to Gunter Grieser for the paper “Learning of recursive concepts
with anomalies.”

We would like to thank the program committee members, Naoki Abe (NEC,
Japan), Mike Bain (Univ. of New South Wales, Australia), Peter Bartlett (Aus-
tralian National Univ., Australia), Shai Ben David (Technion, Israel), Rusins
Freivalds (Univ. of Latvia, Latvia), Nitin Indurkhya (Nanyang Tech Univ., Singa-
pore), Roni Khardon (Tufts University, USA), Eric Martin (Univ. of New South
Wales, Australia), Yasu Sakakibara (Tokyo Denki Univ., Japan), Takeshi Shino-
hara (Kyushu Inst. of Tech, Japan), Frank Stephan (Univ. of Heidelberg, Ger-
many), Osamu Watanabe (Titech, Japan), and Akihiro Yamamoto (Hokkaido
Univ., Japan) and the subreferees (listed separately) for spending their valuable
time reviewing and evaluating the papers.

VI Preface

We would also like to thank Eric Martin (Univ. of New South Wales) and
Eric McCreath (University of Sydney) for local arrangments, and the ALT Steer-
ing Committee consisting of Peter Bartlett, Klaus P. Jantke, Phil Long, Heikki
Mannila, Akira Maruoka, Luc De Raedt, Arun Sharma, Takeshi Shinohara, Os-
amu Watanabe, and Thomas Zeugmann for providing the management of the
ALT series.

December 2000 Hiroki Arimura
Sanjay Jain

Arun Sharma

Preface VII

Referees

Nader Bshouty
Nadav Eiron
Toshiaki Ejima
Koichi Hirata
Hiroki Ishizaka

Satoshi Kobayashi
Takeshi Koshiba
W. S. Lee
Seishi Okamoto
Wolfgang Merkle

Tetsuhiro Miyahara
Noriko Sugimoto
Jun Takeuti
Takashi Yokomori

Sponsoring Institutions

School of Computer Science and Engineering, The University of New South
Wales

Supporting Organizations

IFIP Working Group 1.4 on Computational Learning Theory
Computer Science Association (CSA)

Table of Contents

INVITED LECTURES

Extracting Information from the Web for Concept Learning and
Collaborative Filtering . 1

William W. Cohen

The Divide-and-Conquer Manifesto . 13
Thomas G. Dietterich

Sequential Sampling Techniques for Algorithmic Learning Theory 27
Osamu Watanabe

REGULAR CONTRIBUTIONS

Statistical Learning

Towards an Algorithmic Statistics . 41
Peter Gács, John Tromp, and Paul Vitányi

Minimum Message Length Grouping of Ordered Data 56
Leigh J. Fitzgibbon, Lloyd Allison, and David L. Dowe

Learning from Positive and Unlabeled Examples . 71
Fabien Letouzey, François Denis, and Rémi Gilleron

Inductive Inference

Learning Erasing Pattern Languages with Queries . 86
Jochen Nessel and Steffen Lange

Learning Recursive Concepts with Anomalies . 101
Gunter Grieser, Steffen Lange, and Thomas Zeugmann

Identification of Function Distinguishable Languages 116
Henning Fernau

A Probabilistic Identification Result . 131
Eric McCreath

ILP

A New Framework for Discovering Knowledge from Two-Dimensional
Structured Data Using Layout Formal Graph System 141

Tomoyuki Uchida, Yuko Itokawa, Takayoshi Shoudai,
Tetsuhiro Miyahara, and Yasuaki Nakamura

X Table of Contents

Hypotheses Finding via Residue Hypotheses with the Resolution
Principle . 156

Akihiro Yamamoto and Bertram Fronhöfer

Conceptual Classifications Guided by a Concept Hierarchy 166
Yuhsuke Itoh and Makoto Haraguchi

Learning Taxonomic Relation by Case-Based Reasoning 179
Ken Satoh

Complexity

Average-Case Analysis of Classification Algorithms for Boolean Functions
and Decision Trees . 194

Tobias Scheffer

Self-Duality of Bounded Monotone Boolean Functions and Related
Problems . 209

Daya Ram Gaur and Ramesh Krishnamurti

Sharper Bounds for the Hardness of Prototype and Feature Selection 224
Richard Nock and Marc Sebban

On the Hardness of Learning Acyclic Conjunctive Queries 238
Kouichi Hirata

Neural Network and Other Paradigms

Dynamic Hand Gesture Recognition Based on Randomized Self-Organizing
Map Algorithm . 252

Tarek El. Tobely, Yuichiro Yoshiki, Ryuichi Tsuda, Naoyuki Tsuruta,
and Makoto Amamiya

On Approximate Learning by Multi-layered Feedforward Circuits 264
Bhaskar DasGupta and Barbara Hammer

The Last-Step Minimax Algorithm . 279
Eiji Takimoto and Manfred K. Warmuth

Rough Sets and Ordinal Classification . 291
Jan C. Bioch and Viara Popova

Support Vector Machines

A Note on the Generalization Performance of Kernel Classifiers with
Margin . 306

Theodoros Evgeniou and Massimiliano Pontil

On the Noise Model of Support Vector Machines Regression 316
Massimiliano Pontil, Sayan Mukherjee, and Federico Girosi

Table of Contents XI

Computationally Efficient Transductive Machines . 325
Craig Saunders, Alexander Gammerman, and Volodya Vovk

Author Index . 335

Extracting Information from the Web for

Concept Learning and Collaborative Filtering
(Extended Abstract)

William W. Cohen�

WhizBang! Labs - Research
4616 Henry Street, Pittsburgh PA 15213

Abstract. Previous work on extracting information from the web gen-
erally makes few assumptions about how the extracted information will
be used. As a consequence, the goal of web-based extraction systems
is usually taken to be the creation of high-quality, noise-free data with
clear semantics. This is a difficult problem which cannot be completely
automated. Here we consider instead the problem of extracting web data
for certain machine learning systems: specifically, collaborative filtering
(CF) and concept learning (CL) systems. CF and CL systems are highly
tolerant of noisy input, and hence much simpler extraction systems can
be used in this context. For CL, we will describe a simple method that
uses a given set of web pages to construct new features, which reduce
the error rate of learned classifiers in a wide variety of situations. For
CF, we will describe a simple method that automatically collects useful
information from the web without any human intervention. The collected
information, represented as ”pseudo-users”, can be used to ”jumpstart”
a CF system when the user base is small (or even absent).

1 Introduction

A number of recent AI systems have addressed the problem of extracting infor-
mation from the web (e.g., [15,17,12,1]). Generally, few assumptions are made
about how the extracted information will be used, and as a consequence, the
goal of web-based extraction systems is usually taken to be the creation of high-
quality, noise-free data with clear semantics. This is a difficult problem, and in
spite some recent progress, writing programs that extract data from the web
remains a time-consuming task—particularly when data is spread across many
different web sites.

In this paper we will consider augmenting concept learning (CL) and col-
laborative filtering (CF) systems with features based on data automatically
extracted from the web. As we will demonstrate, extracting data for learning
systems is a fundamentally different problem than extracting data for, say, a
conventional database system. Since learning systems are tolerant of noisy data,
novel approaches to extracting data can be used—approaches which extract lots
of noisy data quickly, with little human cost.
� The work described here was conducted while the author was employed by AT&T

Labs - Research.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 1–12, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 William W. Cohen

Here we propose a simple general-purpose method that takes as input a
collection of web pages and a set of instances, and produces a set of new features,
defined over the given instances. For example, consider a learning problem in
which the instances are the names of musical artists. The generated feature
gclassical might be true for all instances that appear in a web page below a
header element containing the word “classical”. Other generated features might
be true for all instances that appear on particular web pages, or that appear in
particular tables or lists. When this “expansion” process is successful, adding
the new features to the original dataset can make concept learning easier: i.e.,
running a learning system on the augmented dataset will yield a lower error rate
than running the same learning system on the original dataset. Analogously,
the same features might make it easier to learn the concept “musical artists
that William likes”; this suggests that the performance of a collaborative music-
recommendation system might also be improved by the addition of these new
features.

To a first approximation, one can think of the expansion method as gener-
ating features based on a large number of automatically-generated extraction
programs. Most of the features proposed will be meaningless, but a few might
be useful, and if even a few useful features are proposed the concept learning
system may be able to improve the error rate.

Below we describe will briefly describe this expansion method, and summarize
a few relevant experimental results for some sample CL and CF tasks. More
information on these results is available elsewhere [7,8].

2 Generating features from the web

The method used for adding features to examples is motivated by a semi-
automatic wrapper generation procedure, which is described elsewhere [6]. The
expansion method takes as input a set of HTML pages P , and a set of instances
X . In the case of collaborative filtering, X would be the set of entities for which
recommendations should be made—for instance, a set of musical artists, for a
music recommendation system. For concept learning, we will assume that X in-
cludes both the training and test instances.1 The result of the expansion process
is to define a number of new features g1(x), . . . , gn(x) over the instances x ∈ X .

The expansion method procedes as follows. First a set of pairs E is initialized
to the empty set. Then, for each page p ∈ P , the following steps are taken.

First, the HTML markup for p is parsed, generating an HTML parse tree Tp.
Each node of this parse tree corresponds either to an HTML element in p, or
a string of text appearing in p. We use text(n) to denote the concatenation (in
order) of all strings appearing below the node n in Tp—that is, the text marked
up by the HTML element corresponding to n. We use tag(n) to denote the tag
of the HTML element corresponding to n.

1 Thus the approach described here is really a method for transduction [22] rather
than induction.

Extracting Information from the Web for Concept Learning and Collabor 3

Table 1. A simple HTML page and the corresponding parse tree.

Sample HTML page p:
<html><head>. . . </head>
<body>
<h1>Editorial Board Members</h1>
<table> <tr>

<td>Harry Q. Bovik, Cranberry U
<td>G. R. Emlin, Lucent

</tr><tr>
<td>Bat Gangley, UC/Bovine
<td>Pheobe L. Mind, Lough Tech

. . .

Parse tree Tp:
html(head(...),

body(
n1: h1(“Editorial Board Members”),

table(
tr(td(“Harry Q. Bovik, Cranberry U”),

n2: td(“G.R. Emlin, Lucent”)),
tr(td(“Bat Gangley, UC/Bovine”),

td(“Pheobe L. Mind, Lough Tech”)),
. . .

Table 1 shows an example HTML page p and the corresponding parse tree
Tp. The tree is shown in a functional notation, where the tag of a node n becomes
the functor of a logical term, and the subtrees of n become the arguments.

Next, the HTML parse tree is adjusted and analyzed. In adjusting the tree, for
each node n that has Ksplit or more children corresponding to line-break (
)
elements (where Ksplit is a parameter) new child nodes are introduced with
the artificial tag line and with child nodes corresponding to elements between
the
 elements. Conceptually, this operation groups items on the same line
together in the tree Tp under a line node, making the tree better reflect the
structure of the document as percieved by a reader. In analyzing the tree, the
scope of each header element in Tp is computed. The scope of a header is all
HTML elements that appear to be below that header when the document is
formatted.

Next, for each node n ∈ Tp such that |text(n)| < Ktext , the pair
(text(n), position(n)) is added to the set E of “proposed expansions”. Here
position(n) is the string “u(p)tag(a0) . . . tag(al)” where u(p) is the URL at which
the page p was found, and a0 . . . al are the nodes encountered in traversing the
path from the root of Tp to n (inclusive). Using Table 1 as an example, assume
that u is the URL for p, and s is the string html body table tr td. Then this
step would add to E pairs like (“G. R. Emlin, Lucent”, us) and (“Bat Gangley,
UC/Bovine”, us). This step would also add many less sensible pairs as well, such

4 William W. Cohen

Table 2. Benchmark problems used in the experiments.

#example #class #initial #pages (Mb) #features
features added

music 1010 20 1600 217 (11.7) 1890
games 791 6 1133 177 (2.5) 1169
birdcom 915 22 674 83 (2.2) 918
birdsci 915 22 1738 83 (2.2) 533

as (“Editorial Board Members”,us′), where s′ = html body h1).
For CL (but not CF), an additional set of pairs are added to E . For each

node n ∈ Tp such that |text(n)| < Ktext , each header node nh such that n is
in the scope of nh, and each word w in text(nh), the pair (text(n), w) is added
to E . For example, in Table 1, the node n2 is in the scope of n1, so the pairs
added to E would include (“G. R. Emlin, Lucent”, “Editorial”), (“G. R. Emlin,
Lucent”, “Board”), and (“G. R. Emlin, Lucent”, “Members”), as well as many
less sensible pairs such as (“G. R. Emlin, Lucent Harry Q. Bovik, Cranberry U”,
“editorial”).

Finally, E is used to define a new set of features as follows. Let sim(s, t) be
the cosine similarity [20] of the strings s and t.2 Let T be the set of positions
and/or header words appearing in E : that is, T = {t : (y, t) ∈ E}. For each t ∈ T
a new feature gt is defined as follows:

gt(x) = 1 iff ∃(y, t) ∈ E : sim(name(x), y) ≥ Ksim

Here name(x) is the natural-language name for x. For example, if x is an instance
with name(x) =“G. R. Emlin”, then the pairs computed from the sample page
might lead to defining geditorial(x) = 1, gboard(x) = 1, and gus = 1.

3 Experimental results for CL

To apply this technique, we need each instance to include some commonly used
natural-language “name” that identifies the instance—e.g., the title of a movie,
or the name of a person. We also need to supply the expansion method with some
set of relevant web pages—preferably, pages that contain many lists and tables
that correspond to meaningful groupings of the instances, and many header
words that meaningfully describe the instances.

Four benchmark CL problems satisfying these conditions are summarized
in Table 2. In the first benchmark problem, music, the goal is to classify into
genres the musical artists appearing in a large on-line music collection. In games,
the name of a computer game is mapped to a broad category for that game
(e.g., action, adventure). In birdcom and birdsci, the name of a species of North

2 We follow the implementation used in WHIRL [5].

Extracting Information from the Web for Concept Learning and Collabor 5

50

55

60

65

70

75

80

85

90

0 100 200 300 400 500 600

#e
rr

or
 r

at
e

#training examples

music

expanded
text only
web only

62

64

66

68

70

72

74

76

78

80

82

0 50 100 150 200 250 300 350 400

#e
rr

or
 r

at
e

#training examples

games

expanded
text only
web only

10

20

30

40

50

60

70

0 100 200 300 400 500 600

#e
rr

or
 r

at
e

#training examples

birdcom

expanded
text only
web only

10

20

30

40

50

60

70

0 100 200 300 400 500 600

#e
rr

or
 r

at
e

#training examples

birdsci

expanded
text only
web only

Fig. 1. Error rate of RIPPER on the four benchmark problems as training set
size is varied.

American bird is mapped to its scientific order. In birdcom the species name
is the common name only, and in birdsci the species names is the common
name concatenated with the scientific name (e.g., “American Robin—Turdus
migratorius”). Each dataset is naturally associated [9,8] with a set of data-rich
web pages, and in each benchmark problem, the initial representation for an
instance is just the name of the instance, represented as a “bag of words”. The
first columns of Table 2 summarize the four benchmark problems, listing for each
problem the number of examples, classes, features, and associated web pages,
and the total size of all web pages in megabytes. The final column indicates the
number of new features introduced by the expansion process.

Figure 1 shows the result of running the rule-learning system RIPPER [3,4]
on the four problems. We used various sized training sets, testing on the remain-
ing data, and averaged over 20 trials. Three representations were used for each
dataset: the original representation, labeled text only in the figure; arepresenta-

6 William W. Cohen

tion including only the features gt generated by the expansion process, labeled
web only; and the union of all features, labeled expanded. To summarize, average
error rates are generally lower with the expanded representation than with the
original text-only representation.

6

7

8

9

10

11

12

13

14

0 50 100 150 200 250 300 350 400

#e
rr

or
 r

at
e

#training examples

classical/non-classical music

expanded
text only

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

#e
rr

or
 r

at
e

#training examples

birdcom - variant web pages

expanded
text only
web only

Fig. 2. Two problems for which expansion provides a dramatic benefit: a two-
class version of music, and a variant of birdcom with automatically-collected web
pages.

The reduction in average error associated with the expanded representation
ranges from 25% (on birdcom) to 2% (on games). We note that on these problems,
the possible improvement is limited by many factors: in the bird benchmarks,
the initial term-based representation is already quite informative; in the games
and music benchmarks, many examples are not usefully expanded; and in all
benchmarks, the large number of classes leads to a “small disjunct problem” [14]
which limits the learning rate. Figure 2 shows the learning curve for a version
of the music problem where the only classes are classical and non-classical, and
where instances not mentioned in the set of web pages were discarded. For this
problem the reduction in error rate is a more dramatic 50%. A second dramatic
reduction in error is also shown on another problem: a version of birdcom in which
the web pages used for expansion were collected by automatically crawling an
the web from an appropriate starting point. Assuming that the automatically
spidered pages would be, on average, less useful than the manually chosen ones,
we halted this crawl when 174 bird-related pages had been collected—somewhat
more than were available in the original set of pages. The automatically-crawled
pages also differ from the set of pages used in the previous experiments in that
they contain many instances of bird names organized phylogenically—that is,
using the same classification scheme that the concept learner is attempting to
discover. The leads to a huge improvement in generalization performance.

Extracting Information from the Web for Concept Learning and Collabor 7

4 Experimental results for CF

We also applied this expansion method as a preprocessor for a CF system. In CF,
entities are recommended to a new user based on the stated preferences of other,
similar users. (For example, a CF system might suggest the band ”The Beatles”
to the user ”Fred” after noticing that Fred’s tastes are similar to Kumar’s tastes,
and that Kumar likes the Beatles.) Using actual user-log data, we measured the
performance of several CF algorithms. We found that running a CF algorithm
using data collected by automatically expanding the set of instances against a
set of relevant web pages was nearly as effective as using data collected from real
users, and better than using data collected by two plausible hand-programmed
web spiders.

In our experiments, we explored the problem of recommending music. The
dataset we used was drawn from user logs associated with a large (2800 album)
repository of digital music, which was made available for limited use within the
AT&T intra-net for experimental purposes. By analyzing the log, it is possible
to build up an approximate record of which musical artists each user likes to
download. We took 3 months worth of log data (June-August 1999), and split
it into a baseline training set and a test set by partitioning it chronologically,
in such a way that all users in the training and test sets were disjoint. We
constructed binary preference ratings by further assuming that a user U “likes”
an artist A if and only if U has downloaded at least one file associated with
A. We will denote the “rating” for artist A by user U as rating(U, A): hence
rating(U, A) = 1 if user U has downloaded some file associated with A and
rating(U, A) = 0 otherwise. There are 5,095 downloads from 353 users in the
test set, 23,438 downloads from 1,028 users in the training set, and a total of
981 different artists.

In evaluating the CF algorithms, we found it helpful to assume a specific
interface for the recommender. Currently, music files are typically downloaded
from this server by a browser, and then played by a certain “helper” application.
By default, the most popularly used helper-application “player” will play a file
over and over, until the user downloads a new file. We propose to extend the
player so that after it finishes playing a downloaded file, it calls a CF algorithm
to obtain a new recommended artist A, and then plays some song associated
with artist A. If the user allows this song to play to the end, then this will
be interpreted as a positive rating for artist A. Alternatively, the user could
download some new file by an artist A′, overriding the recommendation. This
will be interpreted as a negative rating for artist A, and a positive rating for
A′. Simulation with such a “smart player” can be simulated using user-log data:
to simulate a user’s actions, we accept a recommendation for A if A is rated
positively by the user (according to the log data) and reject it otherwise. When a
recommendation is rejected, we simulate the user’s choice of a new file by picking
an arbitrary positively-rated artist, and we continue the interaction until every
artist rated positively by the test user has been recommended or requested. We
define the accuracy of a simulated interaction between a CF method M and a
test user U , denoted ACC(M, U), to be the number of times the user accepts

8 William W. Cohen

a recommendation, divided by the number of interactions between the user and
the smart player.

We used several CF algorithms. Two of the best performing were K-nearest
neighbor (K-NN), one of the most widely-used CF algorithms (e.g., [13],[21]
and a novel algorithm called extended direct Bayesian prediction (XDB). XDB
algorithm was motivated by considering the optimal behavior for CF given a
single positive rating, i.e., a single artist Ai that user U is known to like. As-
suming that users are i.i.d., the probability that U will like artist Aj is simply
Pr(rating(U ′, Aj) = 1|rating(U ′, Ai) = 1) where the probability is taken over
all possible users U ′. This probability can be easily estimated from the training
data. XDB employs with a simple ad hoc extension of this “direct Bayesian”
recommendation scheme to later trials. Consider an arbitrary trial t, and let
B1, ...Bt−1 be the artists that have been positively rated by U . XDB always
recommends the artist maximizing the scoring function

SCORE(A) = 1−
t−1∏
j=1

(1− Pr(rating(U ′, A) = 1|rating(U ′, Bj) = 1))

We evaluated these CF algorithms on two types of data. The first was that
baseline training set, containing user ratings inferred from the user logs. The
second type of data was derived automatically from the web using the expan-
sion algorithm of Section 2: specifically, each derived feature gt(x) is handled as
if it were a user u who rates an artist x “positive” exactly when gt(x) = 1. These
“pseudo-users” can be either added to set of “real” users, or else can be used
lieu of “real” users. Notice that in the latter case, the recommendation system
requires no user community to make recommendations—only a set of relevant
web-pages. The web pages used in these experiments were collected automat-
ically by a heuristic process [8] in which commercial web-search engines were
used to find pages likely to contain lists of musical artists.

As an additional baseline, we also hand-coded two recommendation systems
based on data collected from a large on-line music database, Allmusic.com. One
hand-coded system relies on genre information, and the second relies on lists of
“related artists” provided by domain experts. Details of their implementation are
given elsewhere [8]; briefly, the hand-coded systems use standard CF heuristics
to look for genres (or lists of related artists) that correlate with a user’s positive
ratings, and makes recommendations based these well-correlated sets of objects.

Results for these experiments are shown in Figure 3. The first graph com-
pares a K-NN CF system trained only on “pseudo-users” with the genre-based
recommender, the related-artist recommender, and the baseline K-NN recom-
mender (trained on the user data). We also show results for K-NN trained on
a subset of the baseline dataset including only 100 distinct users. The second
graph repeats this comparison using the XDB algorithm. To summarize, the
performance of the system trained on “pseudo-users” is much better than either
hand-coded recommendations system, but still worse than CF using the base-
line dataset. For K-NN, training on “pseudo-users” leads to a system that is
statistically indistinguishable from the 100-user dataset.

Extracting Information from the Web for Concept Learning and Collabor 9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 A
cc

ur
ac

y
fo

r
K

-N
N

Number of Trials

Users
100 Users

Pseudo-users
Genres

Related Artists

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 A
cc

ur
ac

y
fo

r
X

D
B

Number of Trials

Users
100 Users

Pseudo-users
Genres

Related Artists

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 A
cc

ur
ac

y
fo

r
X

D
B

Number of Trials

100 Users
100 Users+SPIDER

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 A
cc

ur
ac

y
fo

r
K

-N
N

Number of Trials

100 Users
100 Users+SPIDER

Fig. 3. CF performance with “pseudo-users”. In the top pair of graphs, perfor-
mance of pseudo-users instead of “real” users; in the bottom pairs of graphs,
performance of a system that is trained on 100 “real” users, with and without
the addition of “pseudo-users”.

The last two graphs of Figure 3 show the result of combining a 100-user train-
ing set with “pseudo-users” obtained from the web. The results are intriguing.
For both K-NN and XDB, adding pseudo-users so the undertrained CF systems
leads to a small but statistically significantly improvement. However, augment-
ing the complete user dataset with “pseudo-users” did not improve performance
for either K-NN or XDB: in both cases, performance on the combined dataset is
statistically indistinguishable from performance on the baseline training dataset
alone. This suggests that the best use for web data in CF may be to “jump start”
a recommendation system that does not yet have a substantial user population.

On this dataset, the baseline CF systems far outperform random guessing,
or recommending the most popular artists. Although XDB tends to perform
somewhat better than K-NN, the difference is not statistically significant.

10 William W. Cohen

5 Related work

There has been much prior work on deriving new features for learning. Often
called “constructive induction”, most of this prior work involves constructing new
features by combining old ones (e.g., [19,16]) or by exploiting domain knowledge
(e.g., [11]). Here, in contrast, new features are found by exploiting unlabeled
web pages from the same domain.

There has also been prior work on learning methods that use unlabeled ex-
amples as well as labeled ones (e.g., [18]). In this paper, however, the additional
input to the learning system is not a set of unlabeled instances, but a set of
documents that may mention the labeled instances.

This paper is most closely related to previous work of Collins and Singer
[10], who also consider constructing features based on occurances of labeled
instances. However, in their experiments, instance occurances are found in free
text, not in structured documents, and the constructed features are based on a
natural-language parse of the text around an reference to an instance. Collins
and Singer demonstrate that the extracted features can be exploited by a system
that uses “co-training” [2] to exploit the new features. This paper extends the
results of Collins and Singer by showing the utility of features extracted from
structured HTML documents, rather than parsed free text, and also shows that
more conventional learning methods can make use of these extracted features.

6 Concluding remarks

We have described a automatic means for extracting data from the web, under
the assumption that the extracted data is intended to be used by a concept
learner or collaborative filtering system. In particular, new features for a CL
system (or new “pseudo-users” for a CF system) are derived by analyzing a set
of unlabeled web pages, and looking for marked-up substrings similar to the
name of some labeled instance x. New features for x are then generated, based
on either header words that appear to modify this substring, or the position in
the HTML page at which the substring appears.

These new features improve CL performance on several benchmark prob-
lems. Performance improvements are sometimes dramatic: on one problem, the
error rate is decreased by a factor of ten, and on another, by half. Further ex-
periments [7] show that these improvements hold for many different types of
concept learners, in a wide range of conditions.

For CF systems, “pseudo-users” derived automatically from web data can im-
prove the performance of undertrained CF systems. Perhaps more interestingly,
CF systems based solely on “pseudo-users” have substantially better recommen-
dation performance than hand-coded CF systems based on data provided by
domain experts. These results suggest that collaborative filtering methods may
be useful even in cases in which there is no explicit community of users. Instead,
it may be possible to build useful recommendation systems that rely solely on
information spidered from the web.

Extracting Information from the Web for Concept Learning and Collabor 11

Acknowledgements

I thank Wei Fan for his contributions to the work on collaborative filtering.

References

1. Naveen Ashish and Craig Knoblock. Wrapper generation for semistructured In-
ternet sources. In Dan Suciu, editor, Proceedings of the Workshop on Manage-
ment of Semistructured Data, Tucson, Arizona, May 1997. Available on-line from
http://www.research.att.com/˜suciu/workshop-papers.html. 1

2. Avrin Blum and Tom Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the 1998 Conference on Computational Learning The-
ory, Madison, WI, 1998. 10

3. William W. Cohen. Fast effective rule induction. In Machine Learning: Proceedings
of the Twelfth International Conference, Lake Tahoe, California, 1995. Morgan
Kaufmann. 5

4. William W. Cohen. Learning with set-valued features. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence, Portland, Oregon, 1996. 5

5. William W. Cohen. Integration of heterogeneous databases without common do-
mains using queries based on textual similarity. In Proceedings of ACM SIGMOD-
98, Seattle, WA, 1998. 4

6. William W. Cohen. Recognizing structure in web pages using similarity queries. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-
99), Orlando, FL, 1999. 2

7. William W. Cohen. Automatically extracting features for concept learning from the
web. In Machine Learning: Proceedings of the Seventeeth International Conference,
Palo Alto, California, 2000. Morgan Kaufmann. 2, 10

8. William W. Cohen and Wei Fan. Web-collaborative filtering: Recommending music
by crawling the web. In Proceedings of The Ninth International World Wide Web
Conference (WWW-2000), Amsterdam, 2000. 2, 5, 8

9. William W. Cohen and Haym Hirsh. Joins that generalize: Text categorization
using WHIRL. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, pages 169–173, New York, NY, 1998. 5

10. Michael Collins and Yoram Singer. Unsupervised models for named entity classifi-
cation. In Proceedings of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora (EMNLP99), College Park,
MD, 1999. 10

11. S. Donoho and L. Rendell. Representing and restructuring domain theories: A
constructive induction approach. Journal of Artificial Intelligence Research, 2:411–
446, 1995. 10

12. J. Hammer, H. Garcia-Molina, J. Cho, and A. Crespo. Extracting semistructured
information from the Web. In Dan Suciu, editor, Proceedings of the Workshop
on Management of Semistructured Data, Tucson, Arizona, May 1997. Available
on-line from http://www.research.att.com/˜suciu/workshop-papers.html. 1

13. William Hill, Lawrence Stead, M. Rosenstein, and G. Furnas. Recommending and
evaluating choices in a virtual community of use. In Proceedings of ACM CHI’95,
pages 194–201, 1995. 8

14. Robert Holte, Liane Acker, and Bruce Porter. Concept learning and the problem
of small disjuncts. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, Detroit, Michigan, 1989. Morgan Kaufmann. 6

12 William W. Cohen

15. Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. Wrapper induction
for information extraction. In Proceedings of the 15th International Joint Confer-
ence on Artificial Intelligence, Osaka, Japan, 1997. 1

16. Christopher J. Matheus and Larry A. Rendell. Constructive induction on decision
trees. In Proceedings of the Eighth International Workshop on Machine Learning,
Evanston, Illinois, 1989. Morgan Kaufmann. 10

17. Ion Muslea, Steven Minton, and Craig Knoblock. Wrapper induction for semistruc-
tured, web-based information sources. In Proceedings of the Conference on Auto-
mated Learning and Discovery (CONALD), 1998. 1

18. K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text
from labeled and unlabeled documents. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98), Madison, WI, 1998. 10

19. Giulia Pagallo and David Haussler. Boolean feature discovery in empirical learning.
Machine Learning, 5(1), 1990. 10

20. Gerard Salton, editor. Automatic Text Processing. Addison Welsley, Reading,
Massachusetts, 1989. 4

21. U. Shardanand and P. Maes. Social information filtering: algorithms for automating
’word of mouth’. In Proceedings of ACM CHI’95, 1995. 8

22. Vladimir Vapnik. Statistical Learning Theory. Wiley and Sons, New York, 1998.
2

The Divide-and-Conquer Manifesto

Thomas G. Dietterich

Oregon State University
Corvallis, OR 97331, USA

tgd@cs.orst.edu

http://www.cs.orst.edu/~tgd

Abstract. Existing machine learning theory and algorithms have fo-
cused on learning an unknown function from training examples, where
the unknown function maps from a feature vector to one of a small
number of classes. Emerging applications in science and industry require
learning much more complex functions that map from complex input
spaces (e.g., 2-dimensional maps, time series, and strings) to complex
output spaces (e.g., other 2-dimensional maps, time series, and strings).
Despite the lack of theory covering such cases, many practical systems
have been built that work well in particular applications. These systems
all employ some form of divide-and-conquer, where the inputs and out-
puts are divided into smaller pieces (e.g., “windows”), classified, and
then the results are merged to produce an overall solution. This pa-
per defines the problem of divide-and-conquer learning and identifies the
key research questions that need to be studied in order to develop practi-
cal, general-purpose learning algorithms for divide-and-conquer problems
and an associated theory.

1 Introduction

The basic supervised learning task is to find an approximation h to an unknown
function f given a collection of labeled training examples of the form 〈x, y〉,
where x is a fixed-length vector of features and y = f(x) is a class label or
output value (e.g., drawn from a small number of discrete classes or an interval
of the real line). In the theory of supervised learning, these training examples are
assumed to be produced by independent draws from some underlying probability
distribution.

However, when we look at current and emerging applications of machine
learning, we find the situation is much more complex. The x values—instead of
being fixed-length vectors—are often variable-length objects such as sequences,
images, time series, or even image time series (e.g., movies, sequences of aerial
photos taken over several years). The y values may be similarly complex se-
quences, images, or time series. Let us consider a few examples.

Example 1: Text-to-Speech. A famous demonstration of machine learning is
the problem of mapping spelled English words into speech signals, as in the
NETtalk system (Sejnowski & Rosenberg, 1987). Each training example is an
English word (e.g., “enough”) along with an aligned phonetic transcription (e.g.,

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 13–26, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

14 Thomas G. Dietterich

“In^-f-”) and an aligned stress transcription (e.g, “0>1<<<”). This is a case in
which both the x and the y values are variable-length sequences.

Example 2: Grasshopper Infestation Prediction. We have been studying the
problem of predicting future infestations of grasshoppers in Eastern Oregon
based on a map of the adult grasshopper population in the previous year and
the daily weather during the fall, winter, and spring (Bunjongsat, 2000). In this
case, each training example is a two-dimensional population map coupled with
a time series of daily weather maps, and the output is another two-dimensional
map.

Example 3: Fraud detection in transactions. Many applications of machine
learning involve analyzing time series of transactions (e.g., telephone calls, insur-
ance claims, TCP connection attempts) to identify changes in behavior associ-
ated with fraudulent activity (Fawcett & Provost, 1997). This can be formalized
as a problem of mapping an input sequence of transactions to an output sequence
of alarms.

Example 4: Finding all volcanoes on Venus (Burl, Asker, Smyth, Fayyad,
Perona, Crumpler, & Aubele, 1998). Many visual applications involve scanning
images to identify objects of scientific interest (volcanoes, bacteria) and estimate
relevant properties (location, volume, age). In this case, the input is a two-
dimensional map of pixels and the output is a two-dimensional map of detected
objects (and their predicted properties).

To solve these kinds of complex problems, practitioners have applied varia-
tions on the venerable “divide and conquer” schema. Viewed abstractly, every
divide-and-conquer method consists of three steps: (a) divide (divide the orig-
inal problem into subproblems), (b) conquer (solve the subproblems, possibly
recursively), and (c) merge (merge the subproblem solutions into a solution for
the original problem).

To apply this schema in machine learning, the x and y values are decomposed
into “windows” or “regions”, individually classified, and then merged to provide a
classification decision for the original problem. For example, in the NETtalk task,
the problem of predicting the entire phoneme sequence (and stress sequence) is
divided into the subproblem of predicting each individual phoneme. To predict
y(i), the ith phoneme (and stress) of a word, a 7-letter window of the input,
from x(i − 3) to x(i + 3), is used to extract a set of input features. To map an
entire word from text to phonemes, we must separately predict the phoneme and
stress of each letter and then concatenate them.

Similarly, for the grasshopper task, one approach is to define a grid of cells
and try to predict the grasshopper population within each cell using as input
the previous year’s population and weather in that cell and neighboring cells.
To construct a prediction map for each year, a prediction is made within each
cell and then those predictions are concatenated to get the whole map.

In both of these examples, the merge step was a trivial concatenation, but
more sophisticated versions of both problems employ complex merge steps. For
example, in our decision tree text-to-speech system (Bakiri & Dietterich, 2000),
we developed a “recurrent” classifier that constrained the allowable predictions

The Divide-and-Conquer Manifesto 15

for each subproblem based on the predictions of other subproblems. Specifically,
we scanned each word from back-to-front, and the results of earlier predictions
were used as input features to constrain subsequent predictions. This strategy
enabled us to correctly pronounce word pairs such as “photograph” and “pho-
tography”, even though they differ only in the last letter.

S 1 S 2 S 3 S 4 S 5

X1 X2 X3 X4 X5

Fig. 1. Belief network representation of a hidden Markov model.

One of the most well-developed “merge methods” is based on Markov model-
ing (Bengio, 1999; Jelinek, 1999). Figure 1 shows a belief network representation
of a hidden Markov model (HMM). Each of the hidden nodes Si (except S1)
stores a transition probability distribution of the form P (Si|Si−1), and each ob-
served node Xi stores an emission probability distribution of the form P (Xi|Si).
An HMM is a stochastic finite state automaton that can be used to generate or
recognize strings. To generate a string, state S1 is chosen according to P (S1),
and then the first output X1 is chosen according to P (X1|S1). Then the sec-
ond state S2 is generated according to P (S2|S1) and so on. Only the Xt’s are
observed in the training and test data.

We can view the HMM as a divide-and-conquer method in which the base
classifier is represented by P (Xi|Si) (which can be inverted by Bayes theorem
to give P (Si|Xi), which assigns a class label Si to the observed value Xi) and
the merge method is represented by P (Si|Si−1). To merge a series of individual
decisions, standard belief propagation methods can be applied to find the most
likely sequence of states S1, S2, . . . , Sn that could have generated the observed
data X1, X2, . . . , Xn.

In speech recognition, for example, the problem is to map a speech signal into
an English sentence. In this application, the hidden states of a hidden Markov
model describe the temporal structure of English (i.e., what words can follow
what other words, what phones can follow what other phones), and the emission
probabilities can be viewed as naive Bayesian classifiers (or gaussian mixture
classifiers) for deciding which phone generated each frame. One of the great
virtues of the hidden Markov model is that both the base classifier and the
merge step are trained jointly. This is in contrast to most other divide-and-
conquer methods, where the base learning algorithm is trained independently of
the merging process.

16 Thomas G. Dietterich

In recent years, many groups, particularly in speech recognition, have ex-
plored hybrid architectures where some other classifier (e.g., decision tree, neural
network) is used in place of the emission probabilities of the HMM (Lippmann
& Gold, 1987; Franzini, Lee, & Waibel, 1990; Bengio, De Mori, Flammia, &
Kompe, 1992; Bourlard & Morgan, 1993). This permits a richer model of local
interactions than the usual naive Bayes model, and that has led to success in
such applications as online handwriting recognition (Bengio, Le Cun, & Hender-
son, 1994), molecular biology (Haussler, Krogh, Brown, Mian, & Sjölander, 1994;
Baldi & Brunak, 1998), and part-of-speech tagging (Màrquez, 1999; Màrquez,
Padró, & Rodŕiguez, 2000), as well as in speech recognition.

2 Research Issues in Divide-and-Conquer Learning

When applying a divide-and-conquer approach, there are six key design decisions
that must be made: (a) output scale, (b) input scale, (c) alignment of outputs
and inputs, (d) decomposition of the loss function, (e) base learning algorithm,
and (f) merge method.

The output scale is the size of the regions or segments into which y is divided.
For example, in our text-to-speech research (Bakiri & Dietterich, 2000), we chose
to predict individual letters. But perhaps predicting pairs of letters would have
been more effective, since some pairs of letters have highly predictable pronoun-
ciations (e.g., “st”, “ck”, and so on). Although we ran hundreds of experiments,
we did not run this particular experiment. In our grasshopper study, we chose
to predict the presence or absence of infestation in grid cells that were 10km on
a side. Was this the correct size? We did not have time to test other grid sizes,
so we do not know.

The input scale is the size of the input “window” that will be supplied as
input to the base level classifier. In the original NETtalk system, Sejnowski and
Rosenberg employed a 7-letter window. Bakiri (1991) performed an exhaustive
series of experiments and found that a 15-letter window gave the best results.
In our grasshopper domain, the input scale was a 30×30km square region, but
other sizes may have been better.

The third decision involves how to align the output windows with the input
windows. In the NETtalk domain, Sejnowski and Rosenberg manually inserted
silent phonemes into the output phoneme string so that there was a direct 1:1
correspondence between input letters and output phonemes. But in many appli-
cations, the outputs and inputs are not pre-aligned. Lucassen and Mercer (1984)
and Ling (1997) have both studied automatic alignment mechanisms for speech
generation. Similarly, speech recognition systems typically employ forced Viterbi
alignment to align the output words and phones with the input windows. Start-
ing with a small set of aligned data, they train an initial HMM. Then this HMM
is applied to unaligned data to find the most likely assignment of the given out-
put words and phones to the input windows. This alignment is assumed to be
correct, and it is then used as additional input data for training a new HMM.

The Divide-and-Conquer Manifesto 17

The fourth decision involves how to decompose the overall loss function into a
loss function that can be applied in the base case. The loss L(ŷ, y) is the penalty
incurred when the learned mapping h predicts ŷ = h(x), but the true answer
is y = f(x). For example, in the grasshopper prediction task, the loss suffered
when we fail to predict a grasshopper infestation is the cost of the resulting crop
damage, and the loss suffered when we predict an infestation (rightly or wrongly)
is the cost of spraying pesticides. This loss function decomposes perfectly into
loss functions for any particular output scale, because the total loss over the
entire region is the sum of the loss at each location. Such perfect decomposition
means that the global loss function can be minimized by minimizing the local
loss function using the base learning algorithm.

Unfortunately, in most complex learning problems, the loss function does not
decompose so simply. Consider, for example, the problem of speech recognition.
Here the goal is to identify the entire sentence correctly, so a loss of 1 is incurred
if any word in the sentence is wrong (with a loss of 0 if no words are wrong).
However, this does not decompose perfectly into a loss function for classifying
each phone. In fact, as long as the maximum likelihood path through the HMM
passes through the correct sequence of words, it does not matter whether every
phone was correctly classified individually.

The loss function in fraud detection problems depends on the financial losses
incurred by the fraudulent activity. This in turn is related to the amount of
time between the start of fraudulent behavior and the time when the learned
classifier raises an alarm. There is also typically a high cost to false alarms
as well. This loss function is difficult to decompose into loss functions for the
individual windows because only the first alarm in an episode matters.

The loss function for detecting volcanoes on Venus is also complex. If a
volcano is detected in a slightly incorrect position, this is not a serious error.
But detecting the same volcano at adjacent positions is an error (because each
volcano should be detected only once), and so is the failure to detect a volcano at
all. Hence, the definition of “correctly detecting a volcano” is not purely local—it
depends on the results of several classification decisions in the neighborhood of
the true volcano location. An additional complicating factor is that the training
data (expert-labeled maps of “training regions” on Venus) is believed to contain
volcanoes that were missed by the experts—inter-expert agreement is not very
high.

The fifth decision involves choosing (or designing) the learning algorithm for
solving the “base case” of the divide-and-conquer schema. Traditionally, stan-
dard machine learning methods have been applied here. However, many of the
assumptions underlying those methods are violated in the divide-and-conquer
setting: the training examples are no longer independent and identically dis-
tributed (iid) and the objective is not to maximize the percentage of correct
classification decisions but instead to provide the most useful information to the
merge step.

The merge method is perhaps the most important of these six decisions.
This is the choice of how to merge the solutions of the individual subproblems

18 Thomas G. Dietterich

to produce a solution to the overall problem. In the literature, many methods
have been applied including simple concatenation (as in NETtalk), feeding the
outputs through a second “merge” network (as in Qian and Sejnowski’s (1988)
protein structure prediction system), learning a recurrent classifier (as described
above), and employing hidden Markov models (as described above) to find the
most likely merged solution.

These six design decisions provide an agenda for machine learning research
on divide-and-conquer problems. The goal of this research will be to study each
of these design decisions, understand how the decisions interact, and develop
methods for making them automatically.

In this paper, we will not address all six of these problems. Instead, we focus
only on the input scale, the output scale, and the merge method.

3 Factors Affecting the Design of Divide-and-Conquer
Systems

We begin with an analysis of the main factors that influence the choice of output
scale, input scale, and merge method. The most important factor is the extent
to which neighboring y(i) values are correlated even after accounting for the in-
formation provided by the predictor x values. To make the discussion concrete,
suppose that we are classifying each pixel of an image into one of two classes
based on the measured red, green, and blue intensities of each pixel (the x values).
Suppose the output scale is a single pixel, so y(i) refers to the class of one pixel
and x(i) is a vector of the red, green, and blue intensities. Consider the condi-
tional joint probability distribution P (y(1), y(2)|x(1), x(2)) of two adjacent pix-
els. Suppose that this can be perfectly factored into P (y(1)|x(1)) ·P (y(2)|x(2)).
Figure 2(a) shows a belief network for this case. In this case, we can choose the
output scale to be one pixel (i.e., y(i)), because the only way that y(i) and y(j)
are correlated is through the correlations of x(1) and x(2).

x(1) x(2)

y(1)

x(1) x(2)

y(2) y(1)

x(1) x(2)

y(2)

x(1) x(2)

y(1) y(2)

(a) (b)

y’

(c) (d)

s(2)s(1)

Fig. 2. Belief networks representing four architectures for divide-and-conquer
systems.

However, now suppose that there is some additional correlation between y(1)
and y(2) that cannot be accounted for by the correlation between x(1) and x(2).

The Divide-and-Conquer Manifesto 19

In this case, the joint distribution P (y(1), y(2)|x(1), x(2)) does not factor. There
are at least three ways to handle this. First, we can increase the output scale to
include both y(1) and y(2) (and the input scale to include x(1) and x(2)). This
is equivalent to defining a new output variable y′ which takes on four possible
values corresponding to the four possible labels of y(1) and y(2) (see Figure 2(b)).

Second, we could apply the chain rule of probability and write the P (y(1), y(2)
| x(1), x(2)) distribution as P (y(1)|x(1)) ·P (y(2)|x(2), y(1)) (where we have also
assumed that y(1) does not depend on x(2).) This suggests a recurrent solution
in which we first predict the value of y(1) using x(1), and then use this predicted
value along with x(2) to predict y(2) (see Figure 2(c)).

The third approach is to model the relationship between y(1) and y(2) as a
hidden Markov model (see Figure 2(d)), using hidden states s(1) and s(2).

This simple analysis shows that there is a tight connection between the choice
of the output scale and the choice of the merge method. If we are merging the
individual decisions via an HMM, we can use a smaller output scale (Figure 2(c)
and (d)) than if we are merging by concatenating the independent classifications
(as in Figure 2(b)), because the HMM captures the correlations between the y
values that would otherwise need to be captured by a larger output scale.

The analysis also suggests that if the input scale is too small, the output
scale may need to be larger or the merge step may need to be more complex.
The reason is that if the input scale does not capture all of the correlations
among the x(i) values, then there will be “induced” correlations among the y(i)
values. For example, if y(1) depends directly on both x(1) and x(2), but the base
classifier ignores x(2), then this will create an added dependency between y(1)
and y(2) (because y(2) depends on x(2)).

A second factor affecting the choice of input and output scale is the amount
of noise in the x(i) and y(i) values. Large noise levels (for a fixed amount of input
data) require high degrees of smoothing and aggregation. This is a consequence of
the well-known bias-variance tradeoff. Noisy training data leads to high variance
and hence, to high error rates. The variance can often be reduced by imposing a
smoothing or regularizing process. In temporal and spatial data, it is natural to
apply some form of temporally- or spatially-local smoothing, since we normally
assume that the underlying x and y values are changing smoothly in space and
time. One way of imposing local smoothing is to use a larger output scale. Con-
sider again the example from Figure 2(b), where we introduced a new variable y′

that took on four values {00, 01, 10, 11} corresponding to the four possible pairs
of labels for y(1) and y(2). We can impose spatial smoothing by constraining y′

to only two possible values {00, 11}. In other words, the larger output scale is
constraining y(1) = y(2). A similar constraint can also be imposed through the
merge techniques shown in Figure 2(c) and (d). These constraints can be made
“soft” through Bayesian methods. For example, rather than banning the 01 and
10 values for y′, we can just impose a penalty for using them by assigning them
lower prior probability. In addition to building a smoothness constraint into the
model, we can also impose smoothness by preprocessing the data to smooth the
y values prior to running the base learning algorithm.

20 Thomas G. Dietterich

If there is noise in the input data, then this usually requires a larger input
scale, so that the base classifier can aggregate a larger number of inputs to
overcome the noise. Again, we can also consider smoothing the input data prior
to running the base classifier (e.g., by modelling the process by which noise is
added to the data as a Markov random field (a 2-D Markov process) and then
finding the maximum aposteriori probability estimate of the true data given the
observed data).

A third fundamental issue influencing the choice of the merge step is the
direction of causality. In standard supervised learning and in learning belief
networks, there is a growing body of evidence that suggests that learning is most
efficient (statistically) when the model being fit to the data matches the direction
of underlying causality. In such cases, the model can usually be parameterized
using a small number of parameters, and consequently, less data is needed to fit
those parameters.

Let us consider the direction of causality in the three merge methods sketched
above. If we treat y(1) and y(2) as in Figure 2(b) or (d), we are assuming
that there is no particular direction of causality between them. If we employ a
recurrent method, we are assuming that a label for y(1) is chosen first, and then it
is used to help choose a label for y(2). This direction of causality is typically more
appropriate for time-series data than for spatial data or biological sequence data.
This suggests that the choice of merge method in a particular application should
depend primarily on domain knowledge about the likely direction of causality in
the problem.

4 An Experimental Study

We now describe an experimental study of the tradeoff between using a large
input scale with a simple merge method and using a small input scale with the
more complex HMM merge method. To generate the training and test data, we
employed a hidden Markov model of the kind shown in Figure 1. In this data,
each Si is a boolean class variable that is observed in the training data and
hidden (and hence, predicted) in the test data. Each Xi is a vector of 10 boolean
variables (xi,0, . . . , xi,9) generated by a simple Naive Bayes model (i.e., there is
a separate probability distribution P (xi,j |Si) that generates each xi,j depending
on the value of Si), and these are observed in both the training and test data.
We will choose the transition probability distribution P (Si+1|Si) and the output
probability distributions P (xi,j |Si) to be stationary (i.e., the same for all values
of i).

Given that we have generated training data according to this HMM, we wish
to compare three learning algorithms. The first algorithm is “optimal” in the
sense that it learns an HMM of exactly the same structure as the true HMM
that generated the data. It is trivial to directly learn the HMM, because all of
its random variables are observed in the training data. To classify test exam-
ples using the learned HMM, we must apply the forward-backward algorithm
to compute P (Si|X1, . . . , XN) for each Si. The forward-backward algorithm can

The Divide-and-Conquer Manifesto 21

be viewed as a combination of two separate algorithms. The forward algorithm
processes the sequence from left-to-right, and for each i, it can be viewed as
computing P (Si|X1, . . . , Xi), which is the probability of the ith class label given
the sequence seen so far. The backward algorithm processes the sequence from
right-to-left, and for each i, it can be viewed as computing P (Si|Xi+1, . . . , XN).
At each node i, these two probability distributions can be multiplied together
and appropriately normalized to obtain P (Si|X1, . . . , XN). (Note: This is a non-
standard description of the forward-backward algorithm. The reader is referred
to (Baldi & Brunak, 1998; Jelinek, 1999) for more rigorous and detailed descrip-
tions.)

The second algorithm is just the forward part of the forward-backward al-
gorithm. The reason to study this method is that it is similar to the kind of
“recurrent” algorithm that Bakiri and Dietterich employed in the text-to-speech
task. The results of classifying X values earlier in the sequence are used as inputs
to classify later values.

The third algorithm applies the standard Naive Bayes classifier to predict
each Si independently. In other words, it assumes that each pair (Xi, Si) is gen-
erated independently from the same distribution according to the probabilities
P (Si) and P (xi,j |Si). We will call this third algorithm, iid-Bayes, and we will
allow it to use wide input windows as follows. An input window of width 3 uses
Xi−1, Xi, and Xi+1 to predict the value of Si. Since this is a Naive Bayes classi-
fier, it does this by learning probability distributions of the form P (xk,j |Si), for
all j and all k ∈ {i− 1, i, i + 1}.

In our experiments, we choose the distribution P (Si|Si−1) to have a symmet-
ric form such that the class changes with probability δ and remains the same
with probability 1 − δ. When δ = 0.5, this means that the individual (Xi, Si)
pairs are generated independently and identically. But when δ is small, adjacent
values of Si are highly correlated.

Our experiments consisted of 100 trials. In each trial, we applied the HMM
to randomly generate a training set and a test set, each containing 10 sequences
of length 50. The probability distribution P (S1) was the uniform distribution.

Figure 3 shows the results of varying δ across a range from 0.01 to 0.50
while using a window size of 1 for iid-Bayes. We see that when δ = 0.5, the three
algorithms give the same performance, but as δ becomes small, the methods that
explicitly model the dependency between the Si values perform much better. The
forward-backward algorithm gives the best results, of course, but the forward
algorithm does quite well. The lesson of this experiment is that it is a mistake
to ignore the dependencies between adjacent windows!

Figure 4 shows the results of varying the window size of iid-Bayes. When δ
is very small, iid-Bayes can obtain excellent performance by using a very wide
window. The reason, of course, is that the wide window captures the correlations
between adjacent Si values indirectly by exploiting the resulting correlations
between the Xi values. However, when δ approaches 0.5, these large windows
perform poorly, because now they are overfitting the data. Furthermore, the
larger the window, the greater the opportunity for overfitting, and hence, the

22 Thomas G. Dietterich

82

84

86

88

9 0

9 2

9 4

9 6

9 8

1 0 0

0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 3 0 . 35 0 . 4 0 . 45 0 . 5

Pe
rc

en
t C

or
re

ct

Pro babili t y o f C hanging C lasse s

iid

f o rw ard

f o rw ard- bac kw ard

Fig. 3. A comparison of the percentage of correct predictions on the test data
for the forward-backward algorithm, the forward algorithm, and the iid-Bayes(1)
algorithm for different values of δ.

80

82

84

86

88

9 0

9 2

9 4

9 6

9 8

1 0 0

- 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

Pe
rc

en
t C

or
re

ct
 (

te
st

 s
et

)

Pro babili t y o f C hanging C lass

iid w =1

iid w =3

iid w =5

iid w =7
f o rw ard- bac kw ard

Fig. 4. Test-set performance of iid-Bayes for different input window sizes com-
pared against the forward-backward algorithm.

The Divide-and-Conquer Manifesto 23

worse the performance. Hence, we can see that a window size of 7 gives the
best iid-Bayes performance for δ from 0 to 0.08. A window size of 5 gives the
best performance for δ from 0.08 to 0.19. A window size of 3 gives the best
performance for δ for 0.19 to 0.42. And for δ > 0.42, a window size of 1 gives
the best performance.

The lesson of this experiment is that the proper choice of input scale de-
pends on the strength of correlation between adjacent Si values, even when that
correlation is a first-order Markov process. Another lesson is that there is an
overfitting cost to using wide windows when they are inappropriate.

We performed a third experiment to see what happens when the temporal
dependency model in the HMM is incorrect. We took each training example and
re-ordered the individual (Xi, Si) pairs to have the following order: (X1, S1),
(X26, S26), (X2, S2), (X27, S27), . . . , (X25, S25), (X50, S50). However, the HMM
learning algorithm still applied the (now incorrect) HMM from Figure 1 to fit
the data.

80

82

84

86

88

9 0

9 2

9 4

- 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

Pe
rc

en
t C

or
re

ct
 (

te
st

 s
et

)

Pro babili t y o f C hanging C lass (alt e rnat ing)

iid w =1

iid w =3

marko v

iid w =5

Fig. 5. Comparison of HMM and iid-Bayes on shuffled data, where the HMM
model does not correctly capture the sequential dependencies in the data.

Figure 5 compares the performance of this incorrect Markov model with the
iid-Bayes model for various settings of δ. We see that now iid-Bayes with a
window size of 5 is able to do much better than the HMM, because a window
size of 5 is large enough to capture the dependencies between Si and Si−2 and
Si+2, whereas the first-order HMM cannot capture these dependencies. Notice
that the first-order HMM gives essentially the same performance as iid-Bayes

24 Thomas G. Dietterich

with a window size of 1 with the exception of very small values for δ. At these
very small values for δ, there is a non-trivial correlation between Si and Si+25,
so even a first-order HMM can capture some useful information. It is interesting
that iid-Bayes with a window size of 3 also captures some of this information,
but because of overfitting, it performs uniformly worse than the HMM.

This simple experimental study shows that if you have a correct model of the
temporal dependencies in sequential data, then the HMM (forward-backward)
approach to divide-and-conquer problems is the best method to apply. Sliding
window methods that rely on a wide input window and a trivial merge step
perform almost as well, but the window size must be adjusted depending on the
strength of the temporal correlations. Finally, if you have an incorrect model of
the temporal correlations, then the HMM method is much less robust, and the
sliding window iid-Bayes approach gives superior results.

5 Concluding Remarks

Emerging applications of machine learning require algorithms that can learn
mappings from complex input spaces to complex output spaces. A natural ap-
proach to solving such problems is to employ some form of divide-and-conquer.
However, there are many difficult decisions that must be made in designing a
divide-and-conquer learning system: (a) the input scale, (b) the output scale,
(c) alignment of inputs and outputs, (d) decomposition of the loss function, (e)
the base learning algorithm, and (f) the merge method. These design decisions
interact in complex ways.

We presented a simple theoretical analysis which suggests that the input and
output scales interact with the choice of merge method. Our experimental study
verified this for the simple case in which the data was generated by an HMM.
If we applied an HMM classifier, the input scale and output scale could both be
1. But if applied a Naive Bayes classifier and merged by simple concatenation,
then we needed much larger input scales.

Researchers in speech recognition have had the most experience with learn-
ing complex mappings, and their HMM-based techniques appear very promising
for explicitly representing temporal constraints. However, our study also showed
that if the assumptions of the model (e.g., of first-order Markov interactions)
is wrong, then HMM-based methods will perform very poorly, while large in-
put windows are more robust. This is consistent with work combining neural
networks (and wide input windows) with HMMs to overcome some of the mod-
eling shortcomings of HMMs. It will be interesting to see how well other learn-
ing algorithms, such as tree- and rule-learning methods, can be combined with
HMM-based merge procedures.

I hope this paper will encourage machine learning researchers to mount a
systematic attack on the problems of divide-and-conquer learning. We are in
the midst of a machine learning revolution, as the learning algorithms devel-
oped over the last 20 years are becoming widely applied in industry and science.
However, many of the new applications of machine learning are complex, and

require divide-and-conquer methods. Rather than continue the current trend of
constructing ad hoc divide-and-conquer systems, we need to study these complex
problems and develop learning algorithms specifically tailored to them. One can
imagine a divide-and-conquer toolkit in which it would be easy to (a) describe the
temporal and spatial structure of complex input and output data, (b) represent
the global loss function of the application, and (c) automatically construct and
train a divide-and-conquer architecture. As machine learning moves beyond sim-
ple classification and regression problems, complex divide-and-conquer methods
are one of the most important new directions to pursue.

Acknowledgements

I wish to thank Dragos Margineantu for many conversations which helped refine
the ideas presented in this paper. The author gratefully acknowledges the support
of NSF grant 9626584-IRI.

Bibliography

Bakiri, G. (1991). Converting English text to speech: A machine learning ap-
proach. Tech. rep. 91-30-2, Department of Computer Science, Oregon State
University, Corvallis, OR.

Bakiri, G., & Dietterich, T. G. (2000). Achieving high-accuracy text-to-speech
with machine learning. In Damper, R. I. (Ed.), Data Mining Techniques
in Speech Synthesis. Chapman and Hall, New York, NY.

Baldi, P., & Brunak, S. (1998). Bioinformatics, the Machine Learning Approach.
MIT Press.

Bengio, Y. (1999). Markovian models for sequential data. Neural Computing
Surveys, 2, 129–162.

Bengio, Y., De Mori, R., Flammia, G., & Kompe, R. (1992). Global optimization
of a neural-network hidden Markov model hybrid. IEEE Transactions on
Neural Networks, 3 (2), 252–258.

Bengio, Y., Le Cun, Y., & Henderson, D. (1994). Globally trained handwrit-
ten word recognizer using spatial representation, convolutional neural net-
works, and hidden Markov models. In Cowan, J. D., Tesauro, G., & Al-
spector, J. (Eds.), Advances in Neural Information Processing Systems,
Vol. 6, pp. 937–944. Morgan Kaufmann, San Francisco.

Bourlard, H., & Morgan, N. (1993). Connectionist Speech Recognition: A Hybrid
Approach. Kluwer.

Bunjongsat, W. (2000). Grasshopper infestation prediction: An application of
data mining to ecological modeling. Tech. rep., Department of Computer
Science, Oregon State University. MS Project Report.

Burl, M. C., Asker, L., Smyth, P., Fayyad, U., Perona, P., Crumpler, L., &
Aubele, J. (1998). Learning to recognize volcanoes on Venus. Machine
Learning, 30 (2/3), 165–194.

26 Thomas G. Dietterich

Fawcett, T., & Provost, F. (1997). Adaptive fraud detection. Knowledge Dis-
covery and Data Mining, 1, 291–316.

Franzini, M., Lee, K., & Waibel, A. (1990). Connectionist Viterbi training: a
new hybrid method for continuous speech recognition. In International
Conference on Acoustics, Speech, and Signal Processing, pp. 425–428.

Haussler, D., Krogh, A., Brown, M., Mian, S., & Sjölander, K. (1994). Hidden
Markov models in computational biology: Applications to protein model-
ing. Journal of Molecular Biology, 235, 1501–1531.

Jelinek, F. (1999). Statistical methods for speech recognition. MIT Press.
Ling, C. X., & Wang, H. (1997). Alignment algorithms for learning to read aloud.

In Proceedings the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97), pp. 874–879.

Lippmann, R. P., & Gold, B. (1987). Neural classifiers useful for speech recogni-
tion. In IEEE Proceedings of the First International Conference on Neural
Networks, Vol. IV, pp. 417–422.

Lucassen, J. M., & Mercer, R. L. (1984). An information theoretic approach to
the automatic determination of phonemic base forms. In Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing,
ICASSP-84, pp. 42.5.1–42.5.4.

Màrquez, L. (1999). Part-of-speech Tagging: A Machine Learning Approach
Based on Decision Trees. Ph.D. thesis, Department de Llenguatges i Sis-
temes Informàtics, Universitat Politecnica de Catalunya.

Màrquez, L., Padró, L., & Rodŕiguez, H. (2000). A machine learning approach
to POS tagging. Machine Learning, 39 (1), 59–91.

Qian, N., & Sejnowski, T. J. (1988). Predicting the secondary structure of glob-
ular proteins using neural network models. Journal of Molecular Biology,
202, 865–884.

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to
pronounce English text. Complex Systems, 1, 145–168.

Sequential Sampling Techniques for Algorithmic

Learning Theory

Osamu Watanabe

Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology
Tokyo 152-8552, Japan

watanabe@is.titech.ac.jp

Abstract. A sequential sampling algorithm or adaptive sampling algo-
rithm is a sampling algorithm that obtains instances sequentially one
by one and determines from these instances whether it has already seen
enough number of instances for achieving a given task. In this paper,
we present two typical sequential sampling algorithms. By using simple
estimation problems for our example, we explain when and how to use
such sampling algorithms for designing adaptive learning algorithms.

1 Introduction

Random sampling is an important technique in computer science for develop-
ing efficient randomized algorithms. A task such as estimating the proportion
of instances with a certain property in a given data set can often be achieved
by randomly sampling a relatively small number of instances. Sample size, i.e.,
the number of sampled instances, is a key factor for sampling, and for determin-
ing appropriate sample size, so called concentration bounds or large deviation
bounds have been used (see, e.g., [9]). In particular, the Chernoff bound and the
Hoeffding bound have been used commonly in theoretical computer science be-
cause they derive a theoretically guaranteed sample size sufficient for achieving
a given task with given accuracy and confidence. There are some cases, however,
where these bounds can provide us with only overestimated or even unrealistic
sample size. In this paper, we show that “sequential sampling algorithms” are
applicable for some of such cases to design adaptive randomized algorithms with
theoretically guaranteed performance.

A sequential sampling algorithm or adaptive sampling algorithm is a sam-
pling algorithm that obtains instances sequentially one by one and determines
from these instances whether it has already seen enough number of instances for
achieving a given task. Intuitively, from the instances seen so far, we can more or
less obtain some knowledge on the input data set, and it may be possible to es-
timate an appropriate sample size. Recently, we have proposed [7,8] a sequential
sampling algorithm for a general hypothesis selection problem (see also [6] for
some preliminary versions). Our main motivation was to scale up various known
learning algorithms for practical applications such as data mining. While some
applications and extensions of our approach towards this direction have been

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 27–40, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

28 Osamu Watanabe

reported [1,4,19], it has been also noticed [3,5] that sequential sampling allows
us to add “adaptivity” to learning algorithms while keeping their worst-case
performance. In this paper, we use some simple examples and explain when and
how to use sequential sampling for designing such adaptive learning algorithms.

The idea of “sampling on-line” is quite natural, and it has been studied in
various contexts. First of all, statisticians made significant accomplishments on
sequential sampling during World War II [21]. In fact, from their activities, a
research area on sequential sampling — sequential analysis — has been formed
in statistics. Thus, it may be quite likely that some of the algorithms explained
here have been already found in their contexts. (For recent studies on sequential
analysis, see, e.g., [10,11].) In computer science, sequential sampling techniques
have been studied in the database community. Lipton and Naughton [16] and
Lipton etal [15] proposed adaptive sampling algorithms for estimating query size
in relational databases. Later Haas and Swami [20] proposed an algorithm that
performs better than the Lipton-Naughton algorithm in some situations. More
recently, Lynch [17] gave a rigorous analysis to the Lipton-Naughton algorithm.
Roughly speaking, the spirit of sequential sampling is to use instances observed so
far for reducing a current and future computational task. This spirit can be found
in some of the learning algorithms proposed in machine learning community.
For example, the Hoeffding race proposed by Maron and Moore [18] attempts
to reduce a search space by removing candidates that are determined hopeless
from the instances seen so far. A more general sequential local search has been
proposed by Greiner [12].

All the above approaches have more or less share the same motivation. That
is, they attempts to design “adaptive algorithms” that can make use of the
advantage of the situation to reduce sample size (or in more general, computation
time) whenever such reduction is indeed possible. We believe that some of these
approaches can be formally discussed so that we can propose adaptive learning
algorithms with theoretically guaranteed performance.

This paper has some overlap with the author’s previous survey paper on
sequential sampling [22]. Due to the space limitation, we will omit some of the
technical discussions explained there.

2 Our Problem and Statistical Bounds

In this paper, we fix one simple estimation problem for our basic example, and
discuss sampling techniques on this problem or its variations. Let us specify our
problem. Let D be an input data set; here it is simply a set of instances. Let B
be a Boolean function defined on instances in D. That is, for any x ∈ D, B(x)
takes either 0 or 1. Our problem is to estimate the probability pB that B(x) = 1
when x is given at random from D; in other words, the ratio of instances x in D
such that B(x) = 1 holds.

Clearly, the probability pB can be computed by counting the number of
instances x in D for which B(x) = 1 holds. In fact, this is only the way if
we are asked to compute pB exactly. But we consider the situation where D is

Sequential Sampling Techniques for Algorithmic Learning Theory 29

Batch Sampling
begin

m ← 0;
for n times do

get x uniformly at random from D;
m ← m + B(x);

output m/n as an approximation of pB ;
end.

Fig. 1. Batch Sampling

huge and it is impractical to go through all instances of D for computing pB.
A natural strategy that we can take in such a situation is random sampling.
That is, we pick up some instances of D randomly and estimate the probability
pB on these selected instances. Without seeing all instances, we cannot hope
for computing the exact value of pB. Also due to the “randomness nature”, we
cannot always obtain a desired answer. Therefore, we must be satisfied if our
sampling algorithm yields a good approximation of pB with reasonable probability.
In this paper, we will discuss this type of approximate estimation problem.

Our estimation problem is completely specified by fixing an “approximation
goal” that defines the notion of “good approximation”. We consider the following
one for our first approximation goal. (In the following, we will use p̃B to denote
the output of a sampling algorithm (for estimating pB); thus, it is a random
variable and the probability below is taken w.r.t. his random variable.)

Approximation Goal 1 (Absolute Error Bound)
For given δ > 0 and ε, 0 < ε < 1, the goal is to have

Pr[|p̃B − pB| ≤ ε] > 1− δ. (1)

As mentioned above, the simplest sampling algorithm for estimating pB is
to pick up instances of D randomly and estimate the probability pB on these
selected instances. Figure 1 gives the precise description of this simplest sampling
algorithm, which we call Batch Sampling algorithm. Here only the assumption
we need (for using the statistical bounds explained below) is that we can easily
pick up instances from D uniformly at random and independently.

The description of Batch Sampling algorithm of Figure 1 is still incomplete
since we have not specified the way to determine n, the number of iterations or
sample size. Of course, to get an accurate estimation, the larger n is the better;
on the other hand, for the efficiency, the smaller n is the better. We would like
to achieve a given accuracy with as small sample size as possible.

To determine appropriate sample size, we can use several statistical bounds,
upper bounds of the probability that a random variable deviates far from its ex-
pectation. Here we explain the Hoeffding bound [13] and the Chernoff bound [2]
that have been used in computer science. (In practice, the bound derived from
the Central Limit Theorem gives a better (i.e., smaller) sample size. But the Cen-

30 Osamu Watanabe

tral Limit Theorem holds only asymptotically, and furthermore, the difference
is within a constant factor. Thus, it is omitted here (see, e.g., [9,22]).)

For explaining these bounds, let us prepare some notations. Let X1, ..., Xn

be independent trials, which are called Bernoulli trials, such that, for 1 ≤ i ≤ n,
we have Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p for some p, 0 < p < 1. Let X be
a random variable defined by X =

∑n
i=1 Xi. Then its expectation E[X] = np;

hence, the expected value of X/n is p. The above three bounds respectively give
an upper bound of the probability that X/n differs from p, say, ε. Below we use
exp(x) to denote ex, where e is the base of the natural logarithm.

Now these two bounds are stated as follows. (In order to distinguish absolute
and relative error bounds, we will use symbols ε and ε for absolute and relative
error bounds respectively.)

Theorem 1. (The Hoeffding Bound)
For any ε, 0 < ε < 1, we have the following relations.

Pr
[
X

n
> p + ε

]
≤ exp(−2nε2), Pr

[
X

n
< p− ε

]
≤ exp(−2nε2).

Theorem 2. (The Chernoff Bound)
For any ε, 0 < ε < 1, we have the following relations.

Pr
[
X

n
> (1 + ε)p

]
≤ exp

(
−pnε2

3

)
, Pr

[
X

n
< (1− ε)p

]
≤ exp

(
−pnε2

2

)
.

By using these bounds, we calculate “safe” sample size, the number n of
examples, so that Batch Sampling satisfies our approximation goals. Here we
consider Goal 1, i.e., bounding the absolute estimation error. It is easy to prove
that the following bounds work. (The proof is easy and it is omitted here.)

Theorem 3. For any δ > 0 and ε, 0 < ε < 1, if Batch Sampling uses sample
size n satisfying one of the following inequalities, then it satisfies (1).

n >
1

2ε2
ln

(
2
δ

)
. (2) n >

3pB

ε2
ln

(
2
δ

)
. (3)

This theorem shows that the simplest sampling algorithm, Batch Sampling,
can be used to achieve the Approximation Goal 1 with a reasonable sample size.
Let us see how the above (sufficient) sample size grows depending on given pa-
rameters. In both bounds (2) and (3), n grows proportional to 1/ε2 and ln(1/δ).
Thus, it is costly to reduce the (absolute) approximation error. On the other
hand, we can reduce the error probability (i.e., improve the confidence) quite a
lot without increasing the sample size so much.

3 Absolute Error vs. elative Error

For another typical approximation goal, we consider the following one.

Sequential Sampling Techniques for Algorithmic Learning Theory 31

Approximation Goal 2 (Relative Error Bound)
For given δ > 0 and ε, 0 < ε < 1, the goal is to have

Pr[|p̃B − pB| ≤ εpB] > 1− δ. (4)

Here again we try our Batch Sampling algorithm to achieve this goal. Since
the Chernoff bound is stated in terms of relative error, it is immediate to obtain
the following sample size bound. (We can get a similar but less efficient sample
size bound by using the Hoeffding bound.)

Theorem 4. For any δ > 0 and ε, 0 < ε < 1, if Batch Sampling uses sample
size n satisfying the following inequality, then it satisfies (4).

n >
3

ε2pB
ln

(
2
δ

)
. (5)

The above size bound is similar to (3). But it does not seem easy to use be-
cause pB, the probability what we want to estimate, is in the denominator of the
bound. (Cf. In the case of (3), we can safely assume that pB = 1.) Nevertheless,
there are some cases where a relative error bound is easier to use and the above
size bound (5) provides a better analysis to us. We show such examples below.

We consider some variations of our estimation problem. First one is the fol-
lowing problem.

Problem 1 Let δ0 > 0 be any constant and fixed. For a given p0, determine
(with confidence > 1− δ0) whether pB > p0 or not. We may assume that either
pB > 3p0/2 or pB < p0/2 holds.

That is, we would like to “approximately” compare pB with p0. Note that
we do not have to answer correctly when p0/2 ≤ pB ≤ 3p0/2 holds.

First we use our sample size bound (2) for Approximation Goal 1. It is easy
to see that the requirement of the problem is satisfied if we run Batch Sampling
algorithm with sample size n1 computed by using ε = p0/2 and δ = δ0, and
compare the obtained p̃B with p0. That is, we can decide (with high confidence)
that pB > p0 if p̃B > p0 and pB < p0 otherwise. Note that the sample size n1 is
2c/p2

0, where c = ln(2/δ0).
On the other hand, by using the sample size bound (5), we can take the

following strategy. Let n2 = 48c/p0, the sample size computed from (5) with
ε = 1/2, pB = p0/2, and δ = δ0, where c = ln(2/δ0) as above. Run Batch
Sampling with this n2 and let p̃B be the obtained estimation. Then compare
p̃B with 3p0/4. We can prove that with probability 1 − δ, we have pB > p0 if
p̃B ≥ 3p0/4 and pB < 3p0 otherwise.

Comparing two sample size n1 and n2, we note that n1 = O(1/p2
0) and n2 =

O(1/p0); that is, n2 is asymptotically better than n1. One reason for this differ-
ence is that we could use large ε (i.e., ε = 1/2) for computing n2.

Next consider the problem of estimating the product probability. Instead
of estimating one probability pB, we consider here a sequence of probabilities

32 Osamu Watanabe

p1, ..., pT , where each pt is defined as the probability that Bt(x) holds for in-
stance x randomly chosen from its domain Dt. Now our problem is to estimate
their product PT =

∏T
t=1 pt within a given absolute error bound. That is, the

following problem.

Problem 2 Let δ0 > 0 be any constant and fixed. For a given ε0, obtain an
estimation P̃T of PT such that

Pr[|P̃T − PT | ≤ ε0] > 1− δ0. (6)

This is a simplified version of the problem solved by Kearns and Singh in [14]
for approximating an underlying Markov decision process, and the following
improvement is due to Domingo [3].

We may assume that, for each t, 1 ≤ t ≤ T , it is easy to pick up instances
from Dt uniformly at random and independently. Thus, by using Batch Sam-
pling, we can get an approximate estimation p̃t of each pt. Here again we use
sample size bounds for two approximation goals.

The strategy used by Kearns and Singh in [14] is essentially based on the
bound (2) for Approximation Goal 1. Their argument is outlined as follows.
1. Check whether there is some t, 1 ≤ t ≤ T , such that pt < ε0. (We can use the

condition discussed above.) If pt < ε0, then we can simply estimate P̃T = 0,
which satisfies the requirement because PT ≤ ε0.

2. Otherwise, for some ε specified later, compute the sample size n1 for achiev-
ing Goal 1 with Batch Sampling. (We use δ0/T for δ.) Then for each t,
1 ≤ t ≤ T , run Batch Sampling algorithm with sample size n1 to get esti-
mate p̃t of pt.

3. From our choice of n1, the following holds with probability 1− δ0. (We also
have a lower bound inequality, which can be treated symmetrically.)

P̃T =
T∏

t=1

p̃t ≤
T∏

t=1

(pt + ε).

But since pt ≥ ε0, we have

T∏
t=1

(pt + ε) ≤
T∏

t=1

pt

(
1 +

ε

ε0

)
=

(
1 +

ε

ε0

)T T∏
t=1

pt =
(

1 +
ε

ε0

)T

PT .

Then by letting ε = ε20/(2T), we have the desired bound, i.e., P̃T ≤ PT + ε0.
4. Finally, the total sample N1 size is estimated as follows, where c = ln(T/δ0).

N1 = T · n1 = T (c(2T)2/2ε40) = c(2T 3/ε40).

On the other hand, the argument becomes much simpler if we compute sam-
ple size n2 using the bound (5) for Approximation Goal 2. (Since the first two
steps are similar, we only state the last two steps.)

Sequential Sampling Techniques for Algorithmic Learning Theory 33

3. From our choice of n2, the following holds with probability 1− δ0.

P̃T =
T∏

t=1

p̃t ≤
T∏

t=1

pt(1 + ε) = (1 + ε)T
T∏

t=1

pt = (1 + ε)T PT .

Then by letting ε = ε0/(2T), we have the desired bound.
4. Recall that we are considering the situation such that pt ≥ ε0 for every t,

1 ≤ t ≤ T . Hence, the total sample N2 size is estimated as follows.

N2 = T · n2 = T (c · 3(2T 2)/ε0ε
2
0) = c(12T 3/ε30).

Note that N1 = O(T 3/ε40) and N2 = O(T 3/ε30). That is, N2 is asymptotically
better than N1.

4 Adaptive Sampling for Bounding the Relative Error

In the previous section, we have seen some examples such that we can design an
asymptotically better algorithm by bounding the relative error (instead of the
absolute error) in the approximation problem. On the other hand, for computing
the size bound (5), we need to know pB or its appropriate lower bound, which
is not easy in some cases. Even if we can use a lower bound p0 for pB, the
actual pB may be usually much larger than p0, and we almost always have to
use unnecessarily large sample sets. For example, for solving Problem 2 in the
previous section, we may assume that pt ≥ ε0 for all t, 1 ≤ t ≤ T , and thus
we could determine the sample size bound N2 = O(T 2/ε30). But if every pt,
1 ≤ t ≤ T , is much larger than ε0, then this sample size is unnecessarily big.

One way to avoid this problem is to perform presampling. By running our
sampling algorithm, e.g., Batch Sampling, with small sample size and obtain
some “rough” estimate of pB. Although it may not be a good approximation
of pB, we can use it to determine appropriate sample size for main sampling.
This is the strategy often suggested in statistics texts, and in fact, this idea
leads to our “adaptive sampling” techniques. Note further that we do not have
to separate presampling and main sampling. On the course of sampling, we can
improve our knowledge on pB; hence, we can simply use it. More specifically,
what we need is a stopping condition that determines whether it has already
seen enough number of examples by using the current estimation of pB.

Lipton etal [15,16] realized this intuitive idea and proposed adaptive sam-
pling algorithms for query size estimation and related problems for relational
database. Our approximate estimation of pB is a special case of estimating query
sizes. Thus, their algorithm is immediately applicable to our problem. (On the
other hand, the proof presented here is for the special case, and it may not
be used to justify the original adaptive sampling algorithm proposed by Lipton
etal [17].)

Figure 2 is the outline of the adaptive sampling algorithm of [15]. Though it
is simplified, the adaptive sampling part is essentially the same as the original

34 Osamu Watanabe

Adaptive Sampling
begin

m ← 0; n ← 0;
while m < A do

get x uniformly at random from D;
m ← m + B(x); n ← n + 1;

output m/n as an approximation of pB ;
end.

Fig. 2. Adaptive Sampling

one. As we can see, the structure of the algorithm is simple. It runs until it sees
more than A examples x with B(x) = 1.

To complete the description of the algorithm, we have to specify the way to
determine A. Here we use the Chernoff bound and derive the following formula
for computing A.

Theorem 5. For any δ > 0 and ε, 0 < ε < 1, if Adaptive Sampling uses the
following A, then it satisfies (4) with probability > 1− δ.

A >
3(1 + ε)

ε2
ln

(
2
δ

)
.

Furthermore, with probability > 1− δ/2, we have

sample size ≤ 3(1 + ε)
(1 − ε)ε2pB

ln
(

2
δ

)
. (7)

Compare the sample size given by (5) and (7). Since ε is usually small, the
difference is within some constant factor. That is, the sample size of this Adaptive
Sampling algorithm is almost optimal; it is almost the same as the best case
where the precise pB is given. Therefore, if our target algorithm is designed with
the bound (5) for Goal 2, then we can add “adaptivity” to the algorithm without
(drastically) changing the worst-case performance of the algorithm. For example,
consider the previous Problem 2 of estimating the product probability PT . We
can modify the second strategy by replacing Batch Sampling with Adaptive
Sampling. Then new sample size N3 becomes (with some small constant c′ > 0)

N3 = c′ · c(12T 3/(p0ε
2
0)),

where p0 ≥ ε0 is a lower bound for p1, ..., pT . In the worst-case (i.e., p0 = ε0), N3

= O(T 3/ε30), which is the same order as N2. On the other hand, if the situation is
favorable and p0 is large, say, p0 > 1/2, then N3 gets decreased and we have N3

= O(T 3/ε20). That is, we could add “adaptivity” to our new strategy without
changing the worst-case performance.

Now we explain the outline of the proof of Theorem 5. In the following
discussion, let t denote the number of execution of the while-iterations until

Sequential Sampling Techniques for Algorithmic Learning Theory 35

Adaptive Sampling halts. In other words, the algorithm has seen t examples and
then the while-condition breaks. (In the following, we simply call this situation
“the algorithm halts at the tth step”.) Note that t is a random variable that
varies depending on the examples drawn from D. Let m̃t and p̃t denote the
value m and m/n when the algorithm halts at the tth step.

Since the while-condition breaks at the tth step, it holds that A ≤ m̃t. On
the other hand, m̃t < A + 1 holds because the while-condition holds before
the tth step. Hence we have A/t ≤ p̃t < (A + 1)/t. Here in order to simplify our
discussion, we assume that p̃t ≈ A/t. In fact, we will see below that t is larger
than 1/(ε2pB) with high probability; thus, the difference (A+1)/t−A/t (= 1/t)
is negligible compared with the error bound εpB. Now assuming p̃t ≈ A/t, it is
easy to see that p̃t is within the desired range [(1−ε)pB, (1+ε)pB] (i.e., |p̃t−pB|
≤ εpB) if and only if

A

(1 + ε)pB
≤ t ≤ A

(1 − ε)pB
.

holds for t. Therefore, the theorem follows from the following two lemmas. (Recall
that t is a random variable, and the probabilities below are taken w.r.t. his
random variable. The proof outlines are given in Appendix.)

Lemma 1. Pr[t < A/((1 + ε)pB)] < δ/2.

Lemma 2. Pr[t > A/((1− ε)pB)] < δ/2.

Notice that the sample size bound (7) is immediate from Lemma 2.

5 Adaptive Sampling for General Utility Functions

We have seen two ways for estimating pB within either an absolute or a relative
error bound. But in some applications, we may need the other closeness con-
ditions, or in more general, we might want to estimate not pB but some other
“utility function” computed from pB. Recall the difference between the sample
size n1 and n2 we have seen at Problem 1. One reason that n2 is asymptotically
smaller than n1 is that we could use a relatively large ε for computing n2, and we
could use a large ε because Approximation Goal 2 was suitable for Problem 1.
Thus, the choice of an appropriate approximation goal is important.

To see this point more clearly, let us consider the following problem.

Problem 3 Let δ0 > 0 be any constant and fixed. Determine (with confidence
> 1−δ0) whether pB > 1/2 or not. Here we may assume that either pB > 1/2+σ0

or pB < 1/2− σ0 holds for some σ0.

This problem is similar to Problem 1, but these two problems have different
critical points. That is, Problem 1 gets harder when p0 gets smaller, whereas
Problem 3 gets harder when σ0 gets smaller. In other words, the closer pB is to
1/2, the more accurate estimation is necessary, and hence the more sample is

36 Osamu Watanabe

needed. Thus, for solving Problem 3, what we want to estimate is not pB itself
but the following value:

uB = pB − 1
2
.

More specifically, the above problem is easily solved if the following approx-
imation goal is achieved. (In the following, we use ũB to denote the output of a
sampling algorithm for estimating uB. Note that uB is not always positive.)

Approximation Goal 3 For given δ > 0 and ε, 0 < ε < 1, the goal is to have

Pr[|ũB − uB| ≤ ε|uB|] > 1− δ. (8)

Suppose that some sampling algorithm satisfies this goal. Then for solving
the above problem, we run this algorithm to estimate uB with relative error
bound ε = 1/2 and δ = δ0. (We are also given σ0.) Then decide pB > 1/2 if
ũB > σ0/2 and pB < 1/2 if ũB < −σ0/2. It is easy to check that this method
correctly determines whether pB > 1/2 or pB < 1/2 with probability > 1 − δ0

(when either pB > 1/2 + σ0 or pB < 1/2− σ0 holds).
Now we would face the same problem. There may exist no appropriate lower

bound of uB, like σ0. Again sequential sampling algorithm is helpful for solving
this problem. One might want to modify our previous Adaptive Sampling algo-
rithm for achieving this new approximation goal. For example, by replacing its
while-condition “m < A” with “m−n/2 < B” and by choosing B appropriately,
we may be able to satisfy the new approximation goal. Unfortunately, though,
this naive approach does not seem to work. In the previous case, the stopping
condition (i.e., the negation of the while-condition “m < A”) was monotonic;
that is, once m ≥ A holds at some point, this condition is unchanged even if we
keep sampling. On the other hand, even if m−n/2 ≥ B holds at some point, the
condition may be falsified later if we keep sampling. Due to this nonmonotonicity,
the previous proof (i.e., the proof of Lemma 1) does not work.

Fortunately, we can deal with this nonmonotonicity by using a slightly more
complicated stopping condition. In Figure 3, we state an adaptive sampling
algorithm that estimates uB and satisfies Approximation Goal 3. Note that the
algorithm does not use any information on uB; hence, we can use it without
knowing uB at all.

Theorem 6. For any δ > 0 and ε, 0 < ε < 1, Nonmonotinic Adaptive Sampling
satisfies (8). Furthermore, with probability more than 1− δ, we have

sample size <∼
2(1 + 2ε)2

(εuB)2
ln

(
1

εuBδ

)
.

We give a proof sketch. The proof outline is basically the same as the one
used in the previous section. Again let t be a random variable whose value is the
step when the algorithm terminates. For any k ≥ 1, we use ũk and αk to denote
respectively the value of u and α at the kth step. Define t0 and t1 by

Sequential Sampling Techniques for Algorithmic Learning Theory 37

Nonmonotonic Adaptive Sampling
begin

m ← 0; n ← 0;
u ← 0; α ← ∞;
while |u| < α(1 + 1/ε) do

get x uniformly at random from D;
m ← m + B(x); n ← n + 1;
u ← m/n − 1/2;

α ←
√

(1/2n) ln(n(n + 1)/δ);
output u as an approximation of uB ;

end.

Fig. 3. Nonmontonic Adaptive Sampling

t0 = min
k
{ αk ≤ ε|uB| }, and t1 = min

k
{ αk ≤ ε|uB|/(1 + 2ε) }.

Since αk decreases monotonously in k, both t0 and t1 are uniquely determined,
and t0 ≤ t1.

We first show that if t0 ≤ t ≤ t1, that is, if the algorithm stops no earlier than
the t0th step nor later than the t1th step, then its output ũt is in the desired
range. (The proof is omitted; see [22].)

Lemma 3. If t0 ≤ t ≤ t1, then we have |ũt − uB| ≤ ε|uB| with probability >
1− δ/(2t0).

Next we show that with reasonable probability the algorithm halts between
the t0th and t1th step. It is easy to see that Theorem 6 follows from these
lemmas. (The proof of Lemma 4 is given in Appendix. On the other hand, we
omit the proof of Lemma 5 because it is similar to Lemma 2.)

Lemma 4. Pr[t < t0] < δ(1− 1/t0).

Lemma 5. Pr[t > t1] < δ/(2t0).

6 Concluding Remarks

We have seen some examples of sequential sampling algorithms and the way they
are used for designing adaptive algorithms. For our explanation, we have used a
very simple probability estimation problem and its variations, but there are many
other interesting problems we can solve by using sequential sampling algorithms.
For example, we have originally developed sequential sampling algorithms for
selecting nearly optimal hypothesis [8], and some extension of our hypothesis
selection technique has been also reported in [19].

Although only a simple utility function is considered, we may be able to use
various functions defined on one or more estimated probabilities. For example,

38 Osamu Watanabe

estimating the entropy or some pseudo entropy function by some sequential
sampling technique is an interesting and practically important problem. In our
general sampling algorithm [8], we have only considered utility functions that
can be approximated by some linear function, because otherwise sample size may
become very large. Since the entropy function does not belong to this function
family, we need to find some way to bound sample size to a reasonable level.

Acknowledgments

This paper is based on a series of joint works [6,7,8] with Carlos Domingo and Ri-
card Gavaldà. I have learned a lot from these talented researchers. In particular,
I thank Carlos for supplying me with information on related works for preparing
this manuscript. I would like to thank Professor Akahira and Professor Lynch
for discussion and giving me pointers to related works. This work is supported
in part by Grant-in-Aid for Scientific Research on Priority Areas (Discovery
Science), 1999, the Ministry of Education, Science, Sports and Culture.

References

1. J. Balcazár, a personal communication. 28
2. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on

the sum of observations, Annals of Mathematical Statistics 23, pp.493–509, 1952.
29

3. C. Dominogo, Faster near-optimal reinforcement learning: adding adaptiveness
to the E3 algorithm, in Proc. f 10th Algorithmic Learning Theory Conference
(ALT’99), Lecture Notes in Artificial Intelligence 1720, Springer-Verlag, pp.241–
251, 1999. 28, 32

4. C. Domingo and O. Watanabe, Scaling up a boosting-based learner via adaptive
sampling, in Proc. f Knowledge Discovery and Data Mining (PAKDD’00), Lecture
Notes in Artificial Intelligence 1805, Springer-Verlag, pp.317–328, 2000. 28

5. C. Domingo and O. Watanabe, MadaBoost: a modification of AdaBoost, in Proc. f
13th Annual Conference on Computational Learning Theory (COLT’00), Morgan
Kaufmann, pp.180–189, 2000. 28

6. C. Domingo, R. Gavaldà, and O. Watanabe, Practical algorithms for on-line se-
lection, in Proc. f the First Intl. onference on Discovery Science, Lecture Notes in
Artificial Intelligence 1532, Springer-Verlag, pp.150–161, 1998. 27, 38

7. C. Domingo, R. Gavaldà, and O. Watanabe, Adaptive sampling methods for scal-
ing up knowledge discovery algorithms, in Proc. f the Second Intl. onference on
Discovery Science, Lecture Notes in Artificial Intelligence , Springer-Verlag, pp.–,
1999. 27, 38

8. C. Domingo, R. Gavaldà, and O. Watanabe, Adaptive sampling meth-
ods for scaling up knowledge discovery algorithms, J. nowledge Discovery
and Data Mining, to appear. (Also available as a research report C-136,
Dept. f Math. and Computing Sciences, Tokyo Institute of Technology, from
www.is.titech.ac.jp/research/research-report/C/) 27, 37, 38

9. W. Feller, An Introduction to Probability Theory and its Applications (Third Edi-
tion), John Wiley & Sons, 1968. 27, 30

Sequential Sampling Techniques for Algorithmic Learning Theory 39

10. B. K. Ghosh and P. K. Sen eds., Handbook of Sequential Analysis, Marcel Dekker,
1991. 28

11. B. K. Ghosh, M. Mukhopadhyay, P. K. Sen, Sequential Estimation, Wiley, 1997.
28

12. R. Greiner, PALO: a probabilistic hill-climbing algorithm, Artificial Intelligence,
84, pp.177–204, 1996. 28

13. W. Hoeffding, Probability inequalities for sums of bounded random variables, Jour-
nal of the American Statistical Association 58, pp.13–30, 1963. 29

14. M. Kearns and S. Singh, Near-optimal reinforcement learning in polynomial time,
in Proc. f the 16th Intl. onference on Machine Learning (ICML’98), Morgan Kauf-
mann, 260–268, 1998. 32

15. R. J. Lipton, J. F. Naughton, D. A. Schneider, and S. Seshadri, Efficient sampling
strategies for relational database operations, Theoretical Computer Science 116,
pp.195–226, 1993. 28, 33

16. R. J. Lipton and J. F. Naughton, Query size estimation by adaptive sampling,
Journal of Computer and System Science 51, pp.18–25, 1995. 28, 33

17. J. F. Lynch, Analysis and application of adaptive sampling, in Proc. f the 19th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS’99), ACM Press, pp.260–267, 1999. 28, 33

18. O. Maron and A. Moore, Hoeffding races: accelerating model selection search for
classification and function approximation, in Advances in Neural Information Pro-
cessing Systems, Morgan Kaufmann, 59–66, 1994. 28

19. T. Scheffer and S. Wrobel, A sequential sampling algorithm for a general class of
utility criteria, in Proc. f the 6th ACM SIGKDD Intl. Conference on Knowledge
Discovery and Data Mining, ACM Press, 2000, to appear. 28, 37

20. P. Haas and A. Swami, Sequential sampling, procedures for query size estimation,
IBM Research Report, RJ 9101 (80915), 1992. 28

21. A. Wald, Sequential Analysis, John Wiley & Sons, 1947. 28
22. O. Watanabe, Simple sampling techniques for discovery science, IEICE

Trans. Info. & Systems, E83-D (1), 19–26, 2000. (A preliminary version is available
as a research report C-137, Dept. f Math. and Computing Sciences, Tokyo Institute
of Technology, from www.is.titech.ac.jp/research/research-report/C/) 28,
30, 37

Appendix

Here we give proof outlines for Lemma 1 and Lemma 2.

Proof of Lemma 1. We would like to estimate the above probability, and for this
purpose, we want to regard the B value of chosen examples as the Bernoulli trials
and to use the statistical bounds of the previous section. There is, however, one
technical problem. These statistical bounds are valid for fixed number of trials,
i.e., examples in this case. On the other hand, the number of examples t itself
is a random variable. Here we can get around this problem by arguing in the
following way.

Let t0 = A/((1 + ε)pB). Then our goal is to show that the algorithm halts
within t0 steps with high probability. Now we modify our algorithm so that it
always sees exactly t0 examples. That is, this new algorithm just ignores the
while-condition and repeats the while-iteration exactly t0 times. Consider the
situation that the original algorithm does halt at the tth step for some t < t0.

40 Osamu Watanabe

Then we have m̃t ≥ A at the tth step, where m̃t denotes the value of m at
the tth step. Though the algorithm stops here, if we continued the while-iteration
after the tth step, we would clearly have m̃t0 ≥ A at the t0th step. From this
observation, we have

Pr[m̃t ≥ A for some t < t0]
≤ Pr[m̃t0 ≥ A in the modified algorithm].

On the other hand, the modified algorithm always sees t0 examples; that
is, it is Batch Sampling. Thus, we can use the Chernoff bound to analyze the
righthand side probability. By our choice of mhtz and A, it is easy to prove that
the righthand side probability is at most δ/2. Thus, the desired bound is proved.
The reason that we could argue by considering only the t0th step is because the
stopping condition “m ≥ A” is monotonic.

Proof of Lemma 2. Let t1 = A/((1− ε)pB). We want to bound the probability
that the algorithm does not halt after the t1th step. Note that this event im-
plies that m̃t1 < A. Thus, it suffices to bound Pr[m̃t1 < A] by δ/2, which is
not difficult by using the Chernoff bound. Here again we consider the modified
algorithm that sees exactly t1 examples.

Proof of Lemma 4. In order to bound Pr[t < t0], we first consider, for any k,
1 ≤ k < t0, the probability Pk that the algorithm halts at the kth step.

Note that the algorithm halts at the kth step if and only if |ũk| ≥ αk(1+1/ε).
Thus, we have

Pk = Pr
[
|ũk| ≥ αk

(
1 +

1
ε

)]
≤ Pr[|ũk| > |uB|+ αk],

because αk > ε|uB| since k < t0.
This means that Pk ≤ Pr[ũk > uB +αk] if ũk ≥ 0, and Pk ≤ Pr[ũk < uB−αk]

otherwise. Both probabilities are bounded by using the Hoeffding bound in the
following way. (Here we only state the bound for the former case. Also although
we simply uses the Hoeffding bound below, precisely speaking, the argument as
in the proof of Theorem 1 is necessary to fix the number of examples. That is,
we first modify the algorithm so that it always sees k examples.)

Pk ≤ Pr[ũk > uB + αk]

= Pr[
k∑

i=1

Xi/n− 1
2

> pB − 1
2

+ αk]

≤ exp(−2α2
kk) =

δ

k(k + 1)
.

Now summing up these bounds, we have

Pr[t < t0] ≤
t0−1∑
k=1

Pk ≤ δ

(
1− 1

t0

)
.

Towards an Algorithmic Statistics

�Extended Abstract�

Peter G�acs�� John Tromp� and Paul Vit�anyi��

Abstract� While Kolmogorov complexity is the accepted absolute mea�

sure of information content of an individual �nite object� a similarly ab�

solute notion is needed for the relation between an individual data sample

and an individual model summarizing the information in the data� for

example� a �nite set where the data sample typically came from� The

statistical theory based on such relations between individual objects can

be called algorithmic statistics� in contrast to ordinary statistical theory

that deals with relations between probabilistic ensembles� We develop a

new algorithmic theory of typical statistic� su�cient statistic� and mini�

mal su�cient statistic�

� Introduction

We take statistical theory to ideally consider the following problem� Given a
data sample and a family of models �hypotheses� one wants to select the model
that produced the data� But a priori it is possible that the data is atypical for
the model that actually produced it� or that the true model is not present in the
considered model class� Therefore we have to relax our requirements� If selection
of a �true	 model cannot be guarantied by any method� then as next best choice
�modeling the data	 as well as possible� irrespective of truth and falsehood of the
resulting model� may be more appropriate� Thus� we change
true	 to �as well
as possible�	 The latter we take to mean that the model expresses all signi�cant
regularities present in the data�

Probabilistic Statistics� In ordinary statistical theory one proceeds as fol�
lows� see for example
��� Suppose two random variables X�Y have a joint prob�
ability mass function p�x� y� and marginal probability mass functions p�x� and
p�y�� Then the �probabilistic� mutual information I�X �Y � is the relative entropy
between the joint distribution and the product distribution p�x�p�y��

I�X �Y � �
X

x

X

y

p�x� y� log
p�x� y�

p�x�p�y�
� ���

Every function T �D� of a data sample D�like the sample mean or the sample
variance�is called a statistic of D� Assume we have a probabilistic ensemble of

� Address� Computer Science Department� Boston University� Boston MA �		
��

U�S�A� Email� gacs�bu�edu� The paper was partly written during this author
s visit

at CWI�
�� Address� CWI� Kruislaan �
��
��� SJ Amsterdam� The Netherlands� Email� ftromp�

paulvg�cwi�nl

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 41 - 5 5 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

models� say a family of probability mass functions ff�g indexed by �� together
with a distribution over �� A statistic T �D� is called su�cient if the probabilistic
mutual information

I���D� � I���T �D�� ���

for all distributions of �� Hence� the mutual information between parameter and
data sample is invariant under taking su	cient statistics and vice versa� That is
to say� a statistic T �D� is called su	cient for � if it contains all the information
in D about �� For example� consider n tosses of a coin with unknown bias � with
outcome D � d�d� � � � dn where di � f
� �g �� � i � n�� Given n� the number of
outcomes ��
 is a su	cient statistic for �� the statistic T �D� �

P
n

i��
di� Given

T � every sequence with T �D� ��
s are equally likely independent of parameter ��
Given k� if D is an outcome of n coin tosses and T �D� � k then Pr�D j T �D� �

k� �
�
n

k

�
��

and Pr�D j T �D� �� k� �
� This can be shown to imply ��� and
therefore T is a su	cient statistic for �� According to Fisher ���� �The statistic
chosen should summarise the whole of the relevant information supplied by the
sample� This may be called the Criterion of Su	ciency � � � In the case of the
normal curve of distribution it is evident that the second moment is a su	cient
statistic for estimating the standard deviation�
 Note that one cannot improve
on su	ciency� for every �possibly randomized� function T we have

I���D� � I���T �D��� ���

that is� mutual information cannot be increased by processing the data sample
in any way� All these notions and laws are probabilistic� they hold in an average
sense� Our program is to develop a sharper theory� which we call algorithmic

statistics to distinguish it from the standard probabilistic statistics� where the
notions and laws hold in the individual sense�

Algorithmic Statistics� In algorithmic statistics� one wants to select an in�
dividual model �described by� say� a �nite set� for which the data is individually
typical� To express the notion �individually typical
 one requires Kolmogorov
complexity�standard probability theory cannot express this� The basic idea is
as follows� In a two�part description� we �rst describe such a model� a �nite set�
and then indicate the data within the �nite set by its index in a natural ordering
of the set� The optimal models make the two�part description as concise as the
shortest one�part description of the data� Moreover� for such optimal two�part
descriptions it can be shown that the data will be �individually typical
 for
the model concerned� A description of such a model is an algorithmic su	cient
statistic since it summarizes all relevant properties of the data� Among the al�
gorithmic su	cient statistics a simplest one �the algorithmic minimal su	cient
statistic� is best in accordance with Ockham�s razor principle since it summa�
rizes the relevant properties of the data as concisely as possible� In probabilistic
data or data subject to noise this involves separating regularities �structure� in
the data from random e�ects�

Background and Related Work� At a Tallinn conference in ����� A�N�
Kolmogorov formulated this task rigorously in terms of Kolmogorov complexity

42 Pe t e r Gác s e t al.

�according to ���� ���	 This approach can also be viewed as a two
part code sep

arating the structure of a string from meaningless random features	 Cover ��� ��
interpreted this approach as �su�cient� statistic	 Related aspects of
randomness
de�ciency� �formally de�ned later in ����� were formulated in ��� ��� and stud

ied in ���� ���	 Algorithmic mutual information� and the associated non
increase
law� were studied in ���� ���	 Despite its evident epistimological prominence in
the theory of hypothesis selection and prediction� only some scattered aspects
of the subject have been studied before� for example as related to the
Kol

mogorov structure function� ���� ��� and
absolutely non
stochastic objects� ����
��� ��� ���� notions also de�ned or suggested by Kolmogorov at the mentioned
meeting	 For the relation with inductive reasoning according to minimum de

scription length principle see ����	 The entire approach is based on Kolmogorov
complexity ��� �also known as algorithmic information theory�	 For a general in

troduction to Kolmogorov complexity� its mathematical theory� and application
to induction see ���	

Results� We develop the outlines of a new general mathematical theory of
algorithmic statistics� in this initial approach restricted to models that are �nite
sets� A set S is �optimal� if the best two�part description consisting of a descrip�
tion of S and a straightforward description of x as an element of S by an index of
size log jSj� is as concise as the shortest one�part description of x� Descriptions
of such optimal sets are algorithmic su�cient statistics� and the shortest de�
scription among them is an algorithmic minimal su�cient statistic� The mode of
description plays a major role in this� We distinguish between �explicit� descrip�
tions and �implicit� descriptions	that are introduced in this paper as a proper
restriction on recursive enumeration based description mode� We establish new
precise range constraints of cardinality and complexity imposed by implicit
and
hence explicit� descriptions for typical and optimal sets� and exhibit for the �rst
time concrete algorithmic minimal
or near�minimal� su�cient statistics for both
description modes� There exist maximally complex objects for which no �nite set
of less complexity is an explicit su�cient statistic	such objects are absolutely
non�stochastic� This improves a result of Shen �
�� to the best possible�

Application� In all practicable inference methods� one must use background
information to determine the appropriate model class �rst	establishing what
meaning the data can have	and only then obtain the best model in that class by
optimizing its parameters� For example in the �probably approximately correct

PAC�� learning criterion one learns a concept in a given concept class
like a
class of Boolean formulas over n variables�� in the �minimum description length

MDL�� induction� �
�� one �rst determines the model class
like Bernoulli pro�
cesses�� Note that MDL has been shown to be a certain generalization of the

Kolmogorov� minimum su�cient statistic in �
���

To develop the onset of a theory of algorithmic statistics we have used the
mathematically convenient model class consisting of the �nite sets� An illustra�
tion of background information is Example �� An example of selecting a model
parameter on the basis of compression properties is the precision at which we
represent the other parameters� too high precision causes accidental noise to be

43T o w ards an A lgo rit hmic S t at ist ic s (Ext e nde d A bst rac t)

modeled as well� too low precision may cause models that should be distinct
to be confused� In general� the performance of a model for a given data sam�
ple depends critically on what we may call the �degree of discretization� or the
�granularity� of the model� the choice of precision of the parameters� the number
of nodes in the hidden layer of a neural network� and so on� The granularity is
often determined ad hoc� In �	
� in two quite di�erent experimental settings the
MDL predicted best model granularity values are shown to coincide with the
best values found experimentally�

� Kolmogorov Complexity

We assume familiarity with the elementary theory of Kolmogorov complexity�
For introduction� details� and proofs� see ��
� We write string to mean a
nite
binary string� Other
nite objects can be encoded into strings in natural ways�
The set of strings is denoted by f�� �g�� The length of a string x is denoted
by l�x�� distinguishing it from the cardinality jSj of a
nite set S� The �pre
x�
Kolmogorov complexity� or algorithmic entropy� K�x� of a string x is the length
of a shortest binary program to compute x on a universal computer �such as a
universal Turing machine�� Intuitively� K�x� represents the minimal amount of
information required to generate x by any e�ective process� ��
� We denote the
shortest program for x by x�� thenK�x� � l�x��� �Actually� x� is the
rst shortest
program for x in an appropriate standard enumeration of all programs for x such
as the halting order�� The conditional Kolmogorov complexity K�x j y� of x
relative to y is de
ned similarly as the length of a shortest program to compute
x if y is furnished as an auxiliary input to the computation�

From now on� we will denote by
�

� an inequality to within an additive con�

stant� and by
�

� the situation when both
�

� and
�

� hold� We will also use
�

� to
denote an inequality to within an multiplicative constant factor� and �� to denote
the situation when both

�

� and
�

� hold�
We will use the �Additivity of Complexity� �Theorem ����� of ��
� property

�by de
nition K�x� y� � K�hx� yi���

K�x� y�
�

� K�x� �K�y j x��
�

� K�y� �K�x j y��� ���

The conditional version needs to be treated carefully� It is

K�x� y j z�
�

� K�x j z� �K�y j x�K�x j z�� z�� �	�

Note that a naive version

K�x� y j z�
�

� K�x j z� �K�y j x�� z�

is incorrect� taking z � x� y � K�x�� the left�hand side equals K�x� j x�� and

the right�hand side equals K�x j x� �K�K�x� j x�� x�
�

� ��
We derive a �to our knowledge� new �directed triangle inequality� that is

needed below�

44 P e t e r Gác s e t al.

Theorem �� For all x� y� z�

K�x j y��
�

� K�x� z j y��
�

� K�z j y�� �K�x j z���

Proof� Using ���� an evident inequality introducing an auxiliary object z� and
twice � �� again�

K�x� z j y��
�

� K�x� y� z��K�y�
�

� K�z� �K�x j z�� �K�y j z���K�y�
�

� K�y� z��K�y� �K�x j z��
�

� K�x j z�� �K�z j y���

This theorem has bizarre consequences� Denote k � K�y� and substitute
k � z and K�k� � x to 	nd the following counterintuitive corollary�

Corollary �� K�K�k� j y� k�
�

� K�K�k� j y��
�

� K�K�k� j k���K�k j y� k�
�

�
�
We can iterate this� given y and K�y� we can determine K�K�K�y��� in O���

bits� So K�K�K�k��� j y� k�
�

�
 and so on�

If we want to 	nd an appropriate model 	tting the data� then we are con�
cerned with the information in the data about such models� To de	ne the al�
gorithmic mutual information between two individual objects x and y with no
probabilities involved� rewrite ��� as

X

x

X

y

p�x� y�
� log p�x� � log p�y� � log p�x� y���

and note that � log p�s� is the length of the pre	x�free Shannon�Fano code for
s� Consider � log p�x� � log p�y� � log p�x� y� over the individual x� y� and re�
place the Shannon�Fano code by the �shortest e�ective description� code� � The
information in y about x is de	ned as

I�y � x� � K�x��K�x j y��
�

� K�x� �K�y��K�x� y�� ���

where the second equality is a consequence of ��� and states the celebrated result

that the information between two individual objects is symmetrical� I�x � y�
�

�
I�y � x�� and therefore we talk about mutual information�� In the full paper
��
we show that the expectation of the algorithmic mutual information I�x � y� is
close the the probabilistic mutual information I�x� y��which corroborates that

� The Shannon�Fano code has optimal expected code length equal to the entropy with
respect to the distribution of the source ���� However� the pre�x�free code of shortest
e	ective description� that achieves code word length K
s� for source word s� has
both about expected optimal code word length and individual optimal e	ective code
word length� ����

� The notation of the algorithmic
individual� notion I
x
 y� distinguishes it from the
probabilistic
average� notion I
x� y�� We deviate slightly from ��� where I
y
 x� is
de�ned as K
x��K
x j y��

45T o w ards an A lgo rit hmic S t at ist ic s (Ext e nde d A bst rac t)

the algorithmic notion is a sharpening of the probabilistic notion to individual
objects�

The mutual information between a pair of strings x and y cannot be in�
creased by processing x and y separately by some deterministic computations�
and furthermore� randomized computation can increase the mutual information
only with negligible probability� ���� ���� Since the 	rst reference gives no proofs
and the second reference is not easily accessible� in the full version of this paper
�
� we use the triangle inequality of Theorem � to give new simple proofs of this
information non�increase�

� Algorithmic Model Development

In this initial investigation� we use for mathematical convenience the model class

consisting of the family of 	nite sets of 	nite binary strings� that is� the set of
subsets of f�� �g��

��� Finite Set Representations

Although all 	nite sets are recursive there are di�erent ways to represent or
specify the set� We only consider ways that have in common a method of recur�
sively enumerating the elements of the 	nite set one by one� and which di�er
in knowledge of its size� For example� we can specify a set of natural numbers
by giving an explicit table or a decision procedure for membership and a bound
on the largest element� or by giving a recursive enumeration of the elements to�
gether with the number of elements� or by giving a recursive enumeration of the
elements together with a bound on the running time� We call a representation
of a 	nite set S explicit if the size jSj of the 	nite set can be computed from it�
A representation of S is implicit if the size jSj can be computed from it only up
to a factor of ��

Example �� In Section
��� we will introduce the set Sk of strings whose elements
have complexity � k� It will be shown that this set can be represented implicitly
by a program of size K�k�� but can be represented explicitly only by a program
of size k�

Such representations are useful in two�stage encodings where one stage of the
code consists of an index in S of length

�

� log jSj� In the implicit case we know�
within an additive constant� how long an index of an element in the set is� In
general S� denotes the shortest binary program from which S can be computed
and whether this is an implicit or explicit description will be clear from the
context�

The worst case� a recursively enumerable representation where nothing is
known about the size of the 	nite set� would lead to indices of unknown length�
We do not consider this case� We may use the notation

Simpl� Sexpl

46 Pe t e r Gác s e t al.

for some implicit and some explicit representation of S� When a result applies to
both implicit and explicit representations� or when it is clear from the context
which representation is meant� we will omit the subscript�

��� Optimal Models and Su�cient Statistics

In the following we will distinguish between �models� that are �nite sets� and
the �shortest programs� to compute those models that are �nite strings� Such a
shortest program is in the proper sense a statistics of the data sample as de�ned
before� In a way this distinction between �model� and �statistics� is arti�cial�
but for now we prefer clarity and unambiguousness in the discussion�

Consider a string x of length n and pre�x complexity K�x� 	 k� We identify
the structure or regularities in x that are to be summarized with a set S of which
x is a random or typical member
 given S �or rather� an �implicit or explicit�
shortest program S� for S�� x cannot be described much shorter than by its

maximal length index in S� Formally this is expressed by K�x j S��
�

� log jSj�
More formally� we �x some constant

� � ��

and require K�x j S�� � log jSj � �� We will not indicate the dependence on

� explicitly� but the constants in all our inequalities �
�

�� will be allowed to be

functions of this �� This de�nition requires a �nite S� In fact� since K�x j S��
�

�

K�x�� it limits the size of S to O��k� and a set S �rather� the shortest program
S� from which it can be computed� is a typical statistic for x i

K�x j S��
�

	 log jSj� ���

Depending on whether S� is an implicit or explicit program� our de�nition splits
into implicit and explicit typicality�

Example �� Consider the set S of binary strings of length n whose every odd
position is �� Let x be element of this set in which the subsequence of bits in even
positions is an incompressible string� Then S is explicitly as well as implicitly
typical for x� The set fxg also has both these properties�

Remark �� It is not clear whether explicit typicality implies implicit typicality�
Section � will show some examples which are implicitly very non�typical but
explicitly at least nearly typical�

There are two natural measures of suitability of such a statistic� We might
prefer either the simplest set� or the largest set� as corresponding to the most
likely structure �explaining� x� The singleton set fxg� while certainly a typical
statistic for x� would indeed be considered a poor explanation� Both measures
relate to the optimality of a two�stage description of x using S

K�x� � K�x� S�
�

	 K�S� �K�x j S��
�

� K�S� � log jSj� ���

47T o w ards an A lgo rit hmic S t at ist ic s (Ext e nde d A bst rac t)

where we rewrite K�x� S� by ���� Here� S can be understood as either Simpl or
Sexpl� Call a set S �containing x� for which

K�x�
�

� K�S� � log jSj� �	�

optimal� �More precisely� we should require K�x� � K�S��log jSj���� Depend

ing on whether K�S� is understood as K�Simpl� or K�Sexpl�� our de�nition splits
into implicit and explicit optimality� The shortest program for an optimal set
is a algorithmic su�cient statistic for x �
�� Furthermore� among optimal sets�
there is a direct trade
o� between complexity and logsize� which together sum to
�

� k� Equality �	� is the algorithmic equivalent dealing with the relation between
the individual su�cient statistic and the individual data sample� in contrast to
the probabilistic notion ����

Example �� The following restricted model family illustrates the di�erence be

tween the algorithmic individual notion of su�cient statistics and the proba

bilistic averaging one� Following the discussion in section �� this example also
illustrates the idea that the semantics of the model class should be obtained
by a restriction on the family of allowable models� after which the �minimal�
su�cient statistics identi�es the most appropriate model in the allowable family
and thus optimizes the parameters in the selected model class� In the algorith

mic setting we use all subsets of f�� �gn as models and the shortest programs
computing them from a given data sample as the statistics� Suppose we have
background information constraining the family of models to the n�� �nite sets
Sk � fx � f�� �gn � x � x� � � � xn�

Pn

i�� xi � kg �� � k � n�� Then� in the
probabilistic sense for every data sample x � x� � � � xn there is only one single
su�cient statistics� for

P
i xi � k this is T �x� � k with the corresponding model

Sk� In the algorithmic setting the situation is more subtle� �In the following ex

ample we use the complexities conditional n�� For x � x� � � � xn with

P
i xi �

n
�

taking Sn

�
as model yields jSn

�
j �

�
n
n

�

�
� and therefore log jSn

�
j
�

� n � �
�
logn�

The sum of K�Sn

�
jn�

�

� � and the logarithmic term gives
�

� n � �
�
logn for the

right
hand side of �	�� But taking x � ���� � � ��� yields K�xjn�
�

� � for the left

hand side� Thus� there is no algorithmic su�cient statistics for the latter x in
this model class� while every x of length n has a probabilistic su�cient statistics
in the model class� In fact� the restricted model class has algorithmic su�cient
statistics for data samples x of length n that have maximal complexity with
respect to the frequency of ���s� the other data samples have no algorithmic
su�cient statistics in this model class�

Example �� It can be shown that the set S of Example � is also optimal� and
so is fxg� Typical sets form a much wider class than optimal ones� fx� yg is still
typical for x but with most y� it will be too complex to be optimal for x�

For a perhaps less arti�cial example� consider complexities conditional to the
length n of strings� Let y be a random string of length n� let Sy be the set of
strings of length n which have ��s exactly where y has� and let x be a random
element of Sy� Then x is a string random with respect to the distribution in

48 P e t e r Gác s e t al.

which ��s are chosen independently with probability ����� so its complexity is
much less than n� The set Sy is typical with respect to x but is too complex to
be optimal� since its 	explicit or implicit
 complexity conditional to n is n�

It follows that 	programs for
 optimal sets are typical statistics� Equality 	�

expresses the conditions on the algorithmic individual relation between the data
and the su�cient statistic� Later we demonstrate that this relation implies that
the probabilistic optimality of mutual information 	�
 holds for the algorithmic
version in the expected sense�

One can also consider notions of near
typical and near
optimal that arise
from replacing the � above by some slow growing functions� such as O	log l	x

or O	log k
 as in ���� ����

��� Properties of Su�cient Statistics

We start with a sequence of lemmas that will be used in the later theorems�
Several of these lemmas have two versions� for implicit and for explicit sets� In
these cases� S will denote Simpl or Sexpl respectively�

Below it is shown that the mutual information between every typical set and
the datum is not much less than K	K	x

� the complexity of the complexity
K	x
 of the datum x� For optimal sets it is at least that� and for algorithmic
minimal statistic it is equal to that� The number of elements of a typical set is
determined by the following�

Lemma �� Let k � K	x
� If a set S is �implicitly or explicitly� typical for x

then I	x � S

�

� k � log jSj�

Proof� By de�nition I	x � S

�

� K	x
�K	x j S�
 and by typicality K	x j S�

�

�
log jSj�

Typicality� optimality� and minimal optimality successively restrict the range
of the cardinality 	and complexity
 of a corresponding model for a datum x� The
above lemma states that for 	implicitly or explicitly
 typical S the cardinality
jSj � �	�k�I�x�S�
� The next lemma asserts that for implicitly typical S the
value I	x � S
 can fall below K	k
 by no more than an additive logarithmic
term�

Lemma �� Let k � K	x
� If a set S is �implicitly or explicitly� typical for x

then I	x � S

�

� K	k
�K	I	x � S

 and log jSj
�

� k�K	k
�K	I	x � S

� �Here�
S is understood as Simpl or Sexpl respectively��

Proof� Writing k � K	x
� since

k
�

� K	k� x

�

� K	k
 �K	x j k�
 	��

by 	�
� we have I	x � S

�

� K	x
�K	x j S�

�

� K	k
� �K	x j S�
�K	x j k�
��

Hence� it su�ces to show K	x j S�
 � K	x j k�

�

� K	I	x � S

� Now� from

49T o w ards an A lgo rit hmic S t at ist ic s (Ext e nde d A bst rac t)

an implicit description S� we can �nd
�

� log jSj
�

� k � I�x � S� and to recover
k we only require an extra K�I�x � S�� bits apart from S�� Therefore� K�k j

S��
�

� K�I�x � S��� This reduces what we have to show to K�x j S��
�

� K�x j
k�� 	K�k j S�� which is asserted by Theorem
�

The term I�x � S� is at least K�k� � � logK�k� where k � K�x�� For x of

length n with k
�

� n and K�k�
�

� l�k�
�

� logn� this yields I�x � S�
�

� logn �
� log logn�

If we further restrict typical sets to optimal sets then the possible number of
elements in S is slightly restricted� First we show that implicit optimality of a
set with respect to a datum is equivalent to typicality with respect to the datum
combined with e�ective constructability �determination� from the datum�

Lemma �� A set S is �implicitly or explicitly� optimal for x i� it is typical and

K�S j x��
�

�
�

Proof� A set S is optimal i� ��� holds with equalities� Rewriting K�x� S�
�

�

K�x�	K�S j x�� the �rst inequality becomes an equality i� K�S j x��
�

�
� and

the second inequality becomes an equality i� K�x j S��
�

� log jSj �that is� S is a
typical set��

Lemma �� Let k � K�x�� If a set S is �implicitly or explicitly� optimal for x�

then I�x � S�
�

� K�S�
�

� K�k� and log jSj
�

� k �K�k��

Proof� If S is optimal for x� then k � K�x�
�

� K�S�	K�x j S��
�

� K�S�	log jSj�

From S� we can �nd both K�S�
�

� l�S�� and jSj and hence k� that is� K�k�
�

�

K�S�� We have I�x � S�
�

� K�S� � K�S j x��
�

� K�S� by ���� Lemma ��

respectively� This proves the �rst property� Substitution of I�x � S�
�

� K�k� in
the expression of Lemma
 proves the second property�

��� A Concrete Implicit Minimal Su�cient Statistic

A simplest implicitly optimal set �that is� of least complexity� is an implicit
algorithmic minimal su�cient statistic� We demonstrate that Sk � fy � K�y� �
kg� the set of all strings of complexity at most k� is such a set� First we establish
the cardinality of Sk�

Lemma �� log jSkj
�

� k �K�k��

Proof� The lower bound is easiest� Denote by k� of length K�k� a shortest pro�
gram for k� Every string s of length k � K�k� � c can be described in a self�

delimiting manner by pre�xing it with k�c�� hence K�s�
�

� k � c 	 � log c� For
a large enough constant c� we have K�s� � k and hence there are ���k�K�k��
strings that are in Sk�

For the upper bound� by �

� all x � Sk satisfy K�x j k��
�

� k �K�k� and
there can only be O��k�K�k�� of them�

5 0 Pe t e r Gác s e t al.

K (k)

k

I (x:S)

k0 k- K (k)
lo g |S |

o pt imal

t ypic al (init ial c o ns t raint)
t ypic al

Fig� �� Range of typical statistics on the straight line I�x � S�
�
� K�x�� log jSj�

From the de�nition of Sk it follows that it is de�ned by k alone� and it is the
same set that is optimal for all objects of the same complexity k�

Theorem �� The set Sk is implicitly optimal for every x with K�x� � k� Also�

we have K�Sk�
�

� K�k��

Proof� From k� we can compute both k and k� l�k�� � k�K�k� and recursively

enumerate Sk� Since also log jSkj
�

� k �K�k� �Lemma ��� the string k� plus a

�xed program is an implicit description of Sk so that K�k�
�

� K�Sk�� Hence�

K�x�
�

� K�Sk�	 log jSkj and since K�x� is the shortest description by de�nition

equality �
�

�� holds� That is� Sk is optimal for x� By Lemma
 K�Sk�
�

� K�k�

which together with the reverse inequality above yields K�Sk�
�

� K�k� which
shows the theorem�

Again using Lemma
 shows that the optimal set Sk has least complexity
among all optimal sets for x� and therefore�

Corollary �� The set Sk is an implicit algorithmic minimal su�cient statistic

for every x with K�x� � k�

All algorithmic minimal su�cient statistics S for x have K�S�
�

� K�k��
and therefore there are O�
K�k�� of them� At least one such a statistic �Sk� is
associated with every one of the O�
k� strings x of complexity k� Thus� while
the idea of the algorithmic minimal su�cient statistic is intuitively appealing�
its unrestricted use doesn�t seem to uncover most relevant aspects of reality�
The only relevant structure in the data with respect to a algorithmic minimal

5 1T o w ards an A lgo rit hmic S t at ist ic s (Ext e nde d A bst rac t)

su�cient statistic is the Kolmogorov complexity� To give an example� an initial
segment of ������ � � � of length n of complexity logn 	 O
�� shares the same
algorithmic su�cient statistic with many
most�� binary strings of length logn	
O
���

��� A Concrete Explicit Minimal Su�cient Statistic

Let us now consider representations of
nite sets that are explicit in the sense
that we can compute the cardinality of the set from the representation� For
example� the description program enumerates all the elements of the set and
halts� Then a set like Sk � fy � K
y� � kg has complexity

�

� k ����� Given
the program we can
nd an element not in Sk� which element by de
nition has
complexity � k� Given Sk we can
nd this element and hence Sk has complexity
�

� k� Let

Nk � jSkj�

then by Lemma � logNk �

� k �K
k�� We can list Sk given k� and Nk which

shows K
Sk�
�

� k�
One way of implementing explicit
nite representations is to provide an ex�

plicit generation time for the enumeration process� If we can generate Sk in time
t recursively using k� then the previous argument shows that the complexity of

every number t� � t satis
es K
t�� k� � k so that K
t��
�

� K
t� j k��
�

� k�K
k�
by
��� This means that t is a huge time which as a function of k rises faster than
every computable function� This argument also shows that explicit enumerative
descriptions of sets S containing x by an enumerative process p plus a limit on the
computation time t may take only l
p�	K
t� bits
with K
t� � log t	� log log t�
but log t unfortunately becomes noncomputably large�

In other cases the generation time is simply recursive in the input� Sn � fy �

l
y� � ng so that K
Sn�
�

� K
n� � logn	� log logn� That is� this typical su��

cient statistic for a random string x with K
x�
�

� n	K
n� has complexity K
n�
both for implicit and explicit descriptions� di�erences in complexity arise only
for nonrandom strings
but not too nonrandom� for K
x�

�

� � these di�erences
vanish again��

It turns out that some strings cannot thus be explicitly represented par�
simonously with low�complexity models
so that one necessarily has bad high
complexity models like Sk above�� For explicit representations� there are abso�

lutely non�stochastic strings that don�t have e�cient two�part representations
with K
x�

�

� K
S� 	 log jSj
x � S� with K
S� signi
cantly less than K
x��
Section ��

Again� consider the special set Sk � fy � K
y� � kg� As we have seen earlier�

Sk itself cannot be explicitly optimal for x since K
Sk�
�

� k and logNk �

�

k�K
k�� and therefore K
Sk�	logNk �

� �k�K
k� which considerably exceeds
k� However� it turns out that a closely related set
Skmx

below� is explicitly near�
optimal� Let Iky denote the index of y in the standard enumeration of Sk� where

5 2 Pe t e r Gác s e t al.

all indexes are padded to the same length
�

� k � K�k� with ��s in front� For
K�x� � k� let mx denote the longest joint pre	x of Ikx and Nk� and let

Ikx � mx�ix� Nk � mx
nx�

Skmx

� fy � Sk � mx� a pre	x of Iky g

Theorem �� The set Skmx

is an explicit algorithmic minimal near�su�cient

statistic for x among subsets of Sk in the following sense�

jK�Skmx

��K�k�� l�mx�j
�

� K�l�mx���

log jSkmx

j
�

� k �K�k�� l�mx��

Hence K�Skmx

�� log jSkmx

j
�

� k�K�l�mx��� Note� K�l�mx��
�

� log k�
 log log k�

The proof is given in the full paper ���� We have not completely succeeded
in giving a concrete algorithmic exlicit minimal su�cient statistic� However� we
show ��� that Skmx

is almost always minimal su�cient�also for the nonstochastic
objects of Section ��

� Non�Stochastic Objects

Every data sample consisting of a 	nite string x has an su�cient statistics in the
form of the singleton set fxg� Such a su�cient statistics is not very enlightening
since it simply replicates the data and has equal complexity with x� Thus� one
is interested in the minimal su�cient statistics that represents the regularity�
�the meaningful� information� in the data and leaves out the accidental features�
This raises the question whether every x has a minimal su�cient statistics that
is signi	cantly less complex than x itself� At a Tallinn conference in
��� Kol�
mogorov �according to �
��
�� raised the question whether there are objects x
that have no minimal su�cient statistics that have relatively small complexity�
In other words� he inquired into the existence of objects that are not in general
position �random with respect to� every 	nite set of small enough complexity�
that is� �absolutely non�random� objects� Clearly� such objects x have neither
minimal nor maximal complexity� if they have minimal complexity then the
singleton set fxg is a minimal su�cient statistics of small complexity� and if
x � f��
gn is completely incompressible �that is� it is individually random and
has no meaningful information�� then the uninformative universe f��
gn is the
minimal su�cient statistics of small complexity� To analyze the question better
we need a technical notion�

De	ne the randomness de�ciency of an object x with respect to a 	nite set
S containing it as the amount by which the complexity of x as an element of
S falls short of the maximal possible complexity of an element in S when S is
known explicitly �say� as a list��

�S�x� � log jSj �K�x j S�� �

�

5 3T o w ards an A lgo rit hmic S t at ist ic s (Ext e nde d A bst rac t)

The meaning of this function is clear� most elements of S have complexity near
log jSj� so this di�erence measures the amount of compressibility in x compared
to the generic� typical� random elements of S� This is a generalization of the
su�ciency notion in that it measures the discrepancy with typicality and hence
su�ciency� if a set S is a su�cient statistic for x then �S�x�

�

	
�
Kolmogorov Structure Function� We �rst consider the relation between

the minimal unavoidable randomness de�ciency of x with respect to a set S
containing it� when the complexity of S is upper bounded by �� Such functional
relations are known as Kolmogorov structure functions� He did not specify what
is meant by K�S� but it was noticed immediately� as the paper �
�� points out�
that the behavior of hx��� is rather trivial if K�S� is taken to be the complexity
of a program that lists S without necessarily halting� Section ��� elaborates this
point� So� this section refers to explicit descriptions only� For technical reasons�
we introduce the following variant of randomness de�ciency �

��

��S�x� 	 log jSj �K�x j S�K�S���

The function �x��� measuring the minimal unavoidable randomness de�ciency
of x with respect to every �nite set S of complexity K�S� � �� Formally� we
de�ne

�x��� 	 min
S

f �S�x� � K�S� � � g�

and its variant ��x de�ned in terms of ��
S
� Note that �x�K�x��

�

	 ��
x
�K�x��

�

	
�
Optimal Non�Stochastic Objects� We are now able to formally express

the notion of non�stochastic ojects using the Kolmogorov structure functions
�x���� �

�

x���� For every given k � n� Shen constructed in �
�� a binary string x
of length n with K�x� � k and �x�k �O�
�� � n� �k �O�log k��

Here� we improve on this result� replacing n� �k �O�log k� with n� k and
using �� to avoid logarithmic terms� This is the best possible� since by choosing

S 	 f
�
gn we �nd log jSj �K�x j S�K�S��
�

	 n� k� and hence ��x�c�
�

� n� k

for some constant c� which implies ��x��� � �x�c�
�

� n� k for every � � c� The
proof is relegated to the full version of this paper ����

Theorem �� For any given k � n� there are constants c�� c� and a binary string

x of length n with K�x j n� � k such that for all � � k � c� we have

��x�� j n� � n� k � c��

Let x be one of the non�stochastic objects of which the existence is established
by Theorem �� Substituting k

�

	 K�xjn� we can contemplate the set S 	 fxg

with complexity K�Sjn�
�

	 k and x has randomness de�ciency
�

	
 with respect

to S� This yields

�

	 ��
x
�K�xjn��

�

� n � K�xjn�� Since it generally holds that

K�xjn�
�

� n� it follows that K�xjn�
�

	 n� That is� these non�stochastic objects

have complexity K�xjn�
�

	 n and are not random� typical� or in general position

with respect to every set S containing them with complexity K�Sjn� �
�

	 n� but

5 4 Pe t e r Gác s e t al.

they are random� typical� or in general position only for sets S with complexity

K�Sjn�
�

� n like S � fxg with K�Sjn�
�

� n� That is� every explicit su�cient

statistic S for x has complexity K�Sjn�
�

� n� and fxg is such a statistic�

References

�� A�R� Barron� J� Rissanen� and B� Yu� The minimum description length principle
in coding and modeling� IEEE Trans� Inform� Theory� IT�������		
�� �
����
���

�� T�M� Cover� Kolmogorov complexity� data compression� and inference� pp� �����
in� The Impact of Processing Techniques on Communications� J�K� Skwirzynski�
Ed�� Martinus Nijho� Publishers� �	
��

�� T�M� Cover and J�A� Thomas� Elements of Information Theory� Wiley� New York�
�		��

�� R� A� Fisher� On the mathematical foundations of theoretical statistics� Philosoph�
ical Transactions of the Royal Society of London� Ser� A� �����	���� ��	���
�

�� Q� Gao� M� Li and P�M�B� Vit�anyi� Applying MDL to learn best model granularity�
Arti�cial Intelligence� To appear� http���xxx�lanl�gov�abs�physics��������

�� P� G�acs� J� Tromp� P� Vit�anyi� Algorithmic statistics� Submitted�
http���xxx�lanl�gov�abs�math�PR��������

� M� Li and P�M�B� Vit�anyi� An Introduction to Kolmogorov Complexity and its

Applications� Springer�Verlag� New York� �nd Edition� �		
�

� A�N� Kolmogorov� Three approaches to the quantitative de�nition of information�

Problems Inform� Transmission ��� ��	��� ��
�
	� A�N� Kolmogorov� On logical foundations of probability theory� Pp� ��� in� Prob�

ability Theory and Mathematical Statistics� Lect� Notes Math�� Vol� ����� K� It�o
and Yu�V� Prokhorov� Eds�� Springer�Verlag� Heidelberg� �	
��

��� A�N� Kolmogorov and V�A� Uspensky� Algorithms and Randomness� SIAM Theory

Probab� Appl�� ������	

�� �
	�����
��� L�A� Levin� Laws of information conservation �nongrowth� and aspects of the foun�

dation of probability theory� Problems Inform� Transmission ������	
��� ��������
��� L�A�Levin Randomness conservation inequalities� information and independence in

mathematical theories� Information and Control �� ��	
�� ����
�
��� P� Martin�L�of� The de�nition of random sequences� Inform� Contr�� 	��	���� ����

��	�
��� A�Kh� Shen� The concept of ��� ���stochasticity in the Kolmogorov sense� and its

properties� Soviet Math� Dokl�� �
����	
��� �	���		�
��� A�Kh� Shen� Discussion on Kolmogorov complexity and statistical analysis� The

Computer Journal� ������			�� ��������
��� P�M�B� Vit�anyi and M� Li� Minimum Description Length Induction� Bayesianism�

and Kolmogorov Complexity� IEEE Trans� Inform� Theory� IT������������ ����
����

�
� V�V� V�yugin� On the defect of randomness of a �nite object with respect to mea�
sures with given complexity bounds� SIAM Theory Probab� Appl�� ������	

�� ��
�
����

�
� V�V� V�yugin� Algorithmic complexity and stochastic properties of �nite binary
sequences� The Computer Journal� ������			�� �	����
�

5 5T o w ards an A lgo rit hmic S t at ist ic s (Ext e nde d A bst rac t)

������� �����	�
��	��
������	 �� �������

����

����� �� ��	
�����
� ����� ������
� �
� ����� �� ����

������ �� ���	
��
 ������� ��� ������
� �������
���
������ �����
����� �������� ��� ��� !
��
����

�����������	
�
�
���

������
���
����

��������� �"	����� ������������ �� ��� 	�
��������� �� ���� ���� ��#
�������
�
������ $� �	�������� �
�#	�����% &% '% (����
)�*+ , ����
�� ��
�� �"��	�� �� �"	����� ������������ $���� �� ��� ������������ ��
�-
�
�� �

�
% (����
 ������ ���� ��� �����	
� ������
 ��� ����
	 ����
� 	��������� ���� '������ .
��
������ !���
����)'.!,% /����
�
0�"��
 ��� �������
��)�**���**1��** , ���� �		���� ��� ����
������#
����
���� �����
� ������� 2�����)��2, 	
����	�� �� �"	����� ���#
���������% 3��� ���� ��
���� ��
�
��� ��
 �	�������� �
�#	����� ��	
�#
������ ��� ���� ��	�
������ ����� ����
 �
���
��� �� $� �
	�
��
 �� ����

������������ �������)!��� �'2 ��� 0��,% &�
�� � ���	�� ��2 �
�#
��
��� ��� (����
4� '.! �� 	�
��
� �
��
���� 0�������)�
����� ���,
�����
�����)
���� ������� �������, ���
 ��� �
�#	���� �������� 	�
���#
��
�% 3��� ����� �� �������� �� ��� �
�$�
 �� ��������� ����� �� ����

�� �� �������� ��� �
�#	���� 	�������� ��� ������� 	�
�����
� $� ���#
������� ��� ��2 �
���
���% 3��� �� ����� �� ���� ����
 5
��$��6#2��$��

��������� �� ����
���� ����%

� �������	�
��

������
� �� ���
�� �� 	�� ���	�	��
�
�� �� �������	 �����
	�	��
� � � ��	 �
��	� �
	� ������
���� ������ 	��	 ��
 �� ������
�� �� ���� �	�����	�� �����
!"#� $�
�	���
	� ��
 �� ������� 	� ����� �
�� ��
	������ ���	�	��
� ���� ����
�������� �� �
 ��	�%��	� 	��	 ��� ������� � ������� ��� �������� 	��� ������ ���%
��
	�	��
 ��
���	� � �
��
� ������
���� �����
	� 	��	 ��� ��
	������ �
 	����

������
� 	����� ��� �������	��
� �
 �
 ���
�� �
� �	�	��	���� �������	��

�������� �
� 	���� ��� ��
� ����	���� �������	��
�� ��� �������� �� ���� 	�
�
 �� ���
 �
� ��� ��
� ���
��� �
 � ��	��
	&� ��
��	��
 ���� �������� �����
�
 ���� ������� ��	�� � ����
� ������� �� 	��	 �� ��� ���� 	� �������� $�
%
	��� '�������� (
�)$'(* ����� �
 	���� � �����
	� 	� ����� ��	���	�� ��
��
����%����� �������
� 	� �� �����

+
 	��� ������ �� �������� � ,�
���� ,������ ��
�	�),,�* !-"� ..� -/# ��%
������ 	� �������	 �����
	�	��
 �� ��	�%��	� 	��	 ��� ������� � ������� ������&�
�����
�� ,������ ��0������� ����	��
 	� 	��� ������� ��� ����� �
 	�� ��
%
�����	��
 � �1����� ������ 2�� ������� ��	� ,������ ��0������� ����������
�� 	��	 	��� ����
� �	����
� ���	����
� ����� ���
� 	��	 �
���� 	��
����� �

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 5 6 - 7 0 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

������ �� �	�
	 � �������
�� ��
���� ������	�
���� ��	���
 �� �	� ��
�� ���
������ ������� ���������� ��
���
�� ���
�� ��
����	
 ����
��	� ��� ���� �	�
	

� �� �	������
� ���� �	� ���� �
�	��	��
� ����� ��
����	
� �	 ����� �������
�
�� ���� �
���� ��� �	����	�� ��������� ��
�
���� �������� �� �	����	�
��
����� �	�
�� ��
� �� �

�����
 ��������

 �� ��� ����
��	
� �������� �� ����� �	 !�����"� ����	�����
��� #�	����
$��������	� %�����
�� &#$%'�
���� ��� ������� ����	
���� ���� �����	��
���� ����� ������ ������
���� (
 �� ����
� ��	��� ��)���	
 ����	��	�����
����

�� ���
 �� �����	
 � �� ����	��	
 �	
�� ����� ��� �����	
 ���� �� ������
��
�� ������
��� �	� ��	 �� ����
� ��	����� ��� �������� �����	
�
��	�� ����
�	�
��� 	�������� &�����	� �	�' �	
����
��	� *����
�	�
�� ��
���� �����	
�
��	
�� ��
� �	
� � ������ �����
� �	
�� ����
��	 �� ��� ��
���� ���
�
��	� ��� ����
���� �����
���� � ��
�� 	����� �� �����	
� �	
�� ��
����
�

+������ ,��
��� -������ �	� !����� �.� ��� �/� ���� �������	
�� �	�
��
��
� ��� ����� ����
��	
�
�� �����	
�
��	 ��
��� ������ ��
� �	� ��������
�

�
� ���� �
���
���	�0��� �	�����	� ,���� !��
��� �1�� %(* ���� ,(* ��2��
�	� �#� ��3�� (
����
����
��� �������
�� ��
����	

� � ��������	
��

�� ��
�
����	
�� ��� ����
�� ����	��	���� ��

��	 ��)���	
 �����	
� �	�

�
���
 �	�
����� �� !�����"� #$%
��� ���� ���� ������
�� ������ �
��
������
 ��� ���� ����������� ���
	
���� ���
����	
� �� ��������
� %(*� ,(* �	� �#�
����
�� ��
����
�
��
��� 4�
�����
��
��
�	�
�� �	�� ��������� �	 ��
�
�
�
5��� ������
�� ������ �	� �0����� ������ ��
����	
��

-� ��� � ������ ��� ���
����	 �	� !�����"� #$%
� ������� ,������	 &����
��	� �	�' �	
����
��	 &���	� ������� ��	�
��' ����
�� ��
����	
 ������
��&�'�
 ��� ����� �	 ��
���
� ��
�� 	����� �� �����	
��
����
�
��	 ���
� ��
��
��
�
�� ��
����	
 ����
��	� �	� �����	
 ������
��� �� ��	�����	�
�� ���
���
����	� ��� �	��
������ ����	� ������ ���
�� ����	
���
��
 �������
�
�� 	�
 �
�
�
�� ��
����	
 ����
��	��
� �� 	�
 	���
�
���� ����

�� ��������	

�
����
��� ��� �
�
�� �	�
�������� ������
�� 	����� �� ������
��	� �	�
���������
��	� �	������� -� ������� ��� ���
����	
�
� +����� �	� ,��
��"�
���� ���� �#� �	� ,(* ���
���� ���� � 	����� �� ��
����
�
�
� �	�
�
���

��	����� ������ ��
����	
� �	� ������
����

 ��� ����� �� �
���
���� �� �����
�� 6��
��	 3 ��	
��	� ��������	� �	����
��
��	 �	 !�����"� ������	� ������� �	� ��� ������
��� (
 ���� ��	
��	� �	
�������
 ��
�� ��� �����	
�
��	
��� �� +������ ,��
�� �	� �
���� �.� ��� �/�
�	� �	 �	
�����
��	
� ��	���� ������� ��	�
� �	����	��� 6��
��	 . ��	
��	�
� ����
�
���	
 ��
�� �����	
�
��	 ������� ���	� ���
����	������ (6��
��	
7�
� ��������
�� ������� ��	�
� �������
��

� ���
� �����	

�� ��
� �	�

�� ���������
� ,������	 �	
����
��	
���	�0��
� ���
� ������
�� ��
����	

������
��� (6��
��	 2�
� ������� ���� ��������	
� �	� �������
�
�
��
��������
��� �� +������ ,��
�� �	� �
���� ��/�� �� ��	�����	� 6��
��	�� 8 �	�
9� �������:�
�� �����
� �	� ������
 ��
���
����

� ���������� 	� �
��� �
 ��
 �	�	��� �
����
 �
����
���
���� ���� ��� ���� ��
�

�����
�
�� ���� ��
 �� �

��	���
� ������ �
 ����
� 	� ��
 ���� ���� �
 ��
 �
����

5 7M inimum M e ssage Le ngt h Gro uping o f Orde re d Dat a

� �������	
�

��� ��� ��	
��
� ��	����

�� ������� ��� �	
 ���
��� ��� � � � ���� � �� ���
� ����������� ���� �

���������� ������ ��
�
� � �

�� �

�
����� �� ���� �������� ���������� ���������� �����

�� ������ ���� ��� ���� ���
��� ������� � �������� ��� � ����� �� ������ �
�������� �� ��� �������� ���
��� ��� �� ������ 	�� ��� ���������� ���������
����������
� �� � ���!������ ���� ��������� ��� ��������� ��

� �

����
���

"�� � ��#
� "�#

����� �� ���������� ��� ���������� ���� �	 ��� � � �������� �� ��� ����� �� �����
� �� ��������� ��� � ����� �� ��� ��������� ����� ��������� � �� ������ �� �������
�� ����� �$����� ���������� ������ ������ ��� ��������� ���� �������� ��������
������
���� ���� "%����� ��������� ���������#� ��� ������$���� ��� ��� ������$���
������� �� ���� ����� ���
� ������� �� ����� �������

&�� �'�������� ������ ��������� ���� �� %�� ��� ������� ��������� ��
����
�� ��� 	�������� ()�
!������������ *����+,-� ���� ./01�

����� �� �� �� � �� ������� � ��	�
�
�� �� ��� �
��� �
� �
���
�� ������� ��

��� ���
� ��� ������� � ����� ����	�� ��	�
�
�� �� ��
��� �� ������� ���
�

��� ������� � ����� ����	�� ��	�
�
�� �� ��
��� �� �������� ����� �� ��� ����� ��

������	�
�
��� �� �� � �� ������
�� �� ������� ���	 �� ��� �� ������� ���	 ��

� ����� ����	�� ������	�
�
��
� ��� � ����

���� ����	 ��
�������
�� �� ��� 	

����� �	���� �� ���
���	��� ��	�����
��� 	�������� �	��
 �� ���� ����	 �� 	� ��	�
�� �� 	 ���	��� �����	�����
��������� ����� 	�
 �� ���
��	��� ��
�������	� ����� ��� ��� �� 	 �����	�
��	�� �� 	�������� ��	� �� ���
 �� �
�����	����
������� ����� ��� �������� �� ���
��� �� �������������� �����!� 	�������� �	� �	���� �� ��
�����
 ��
���
����
��
"� ����� # ���
���
����
� ��� 	 �������� ���� ����� ������� ���
���	���$ �$
��� 	 ������ �� ����
�$ �$ �
 �� 	� �

�� ����
 ���� �� ������

��� ���� ���
������ �� �����!� ��� ���

������������������������
�
	���%� � #	
 � #& ' ����
��
	 �� (������ ��

��

�)�

"�
�	�����$ ���� � ��

��� ��� ���	
�� �
�� ��� ���
��� �
��

���� ����
�
��

��� ���� ��������� *���� ����
	�	$ ����� � �� ��+����$ 	
�	���������
���� ���� 	 �	��� �� ��	�� �,�	��
	������� ��������� 	�
 ���� ������ ���� �� �	��

�
���� �� ���� �	
	 �����
 ������ ��� ���������� ��	
���	

5 8 Le igh J . Fit z gibb o n e t al.

������ ����	
����

������ �� � ����� � �� � ������
��������� �� � �������� � ��� ������

	��� �� � ��������� ��� �	
������

�����

	�
� � 	�
� �� � � ��

������� ����
	
����

������ �� �
��������� �� �
��
	
�� �	���

������ �� ������ �� � ����� �������
��������� �� ��������� �� � ������ �������
	��� �� �� 	��� ��� ���������
������� �	���

	�
� �� �� �������	�
 � �� � � �� � ��������� ��

���������������������

�
�� �� � ����
�� ������

��� ��������
 ����� �� ������ � !	�"�#��
�������
$�

�%

���� ���� ��� 	
 ���������
��� �
�
�
�� �
� ��Æ���� ���� � ����� ����
� �
�
��
��	��
 ���
�
��
� 	
��

� ��
 �
����
��� �
����
� ��
 �
��� �����
 �������
�� �
�
� � ��� �� �� ��
� �
�

�
���
� ���� �� !� ��
� � �
 "� !�
� ����
���
�
�
��
�
 �
�� ���
��
�
�� �� �� ��Æ���� �
 �
�
����
 ��
 ���
 ���	
�
� �
 �
����

���� ��������� �	�
����	 #�
� ��
� �
 $�
� ��
 ���	
�
� �
 �
���
�� � ����%�
�� ��
 �
��� �����
� �������
� ��� ��
 �

�
������
� �
� ��
 ���%
�
��� �
����
��� ��� �
 �
�� �����
�
��� &���
� ��� !
�	
� '(() �
��� ����
��
 *�+���� ,�$
���

�
������
� �
� ��
 ���%�
��� �
����
� ��
 ���
���	�
� -�
��
��
+�
���
��� ��
 *�+���� ,�$
���

� �
������
 ���� ��� ��
� ��
 �
��
��
���	
�
� �
 �
��� ����
� ��
��
� � �� �
� .���	��$%,
�	�
� �������
 ���� �
**, 	��
� �
������
 ���� ��� �
� $�
� ��
 �
��
�� ���	
�
� �
 �
���� /�

+����

� ���� ��� 	
 �

� �� ��
 �
��� �����
� �������
�� �� !� ��
� � ��� "�
0�
 �
��� �����
� ��� *1, �
��
�� �
�� �
 ����
 ���%�
���� �� ��
�
 ��
+�����

�
���
��
��

��
 ��� �
�
��� ��		��� ������ ��
��
���

0�
 **, ��������
 '(2� ��� (3) �� 	��
�
� �
����� �
��� ��

��� -� ��
���
�
� ����
��
� �
� �
������ �
��
��� ���
��
�
� 4�
�
��5 	�
��
��� 	
�� ��

���
��
��� ��� ��
 ���� �� � ��
%���� �
���
� !
� � ���
��
���� �� ��� �����
1� 6��
�7� ��

�
� ��
� ��
 �
��
��� �
����
����� 	
��

� ��
 ��
	�	�����
�8

��4�9�5 � ��4�5 � ��4���5 � ��4�5 � ��4� ��5� 4�5

����� ��� 	
 �
�����
� ��8

��4� ��5 �
��4�5 � ��4���5

��4�5
4�5

5 9M inimum M e ssage Le ngt h Gro uping o f Orde re d Dat a

���� �� ���� ������	�

�	��

���� �� �
� ������	 ����	 ������� ���	�	��� �� ���� ��

���� �� ����� ������	 ����	 ������� ���	�	��� �� ���� ��

���� �� ���� ������	 ����	 ������� ���	�	��� �� ���� ��

���� 	� ���� ������	 ����	 ������� ���	�	��� �� ���� ��

6 0 Le igh J . Fit z gibb o n e t al.

����� �����	
�� ��
� ���� ��
� ������� ���� ���� ���
�
��

��� ����
����� � �������
�
��

���� �� ���� ���
 ���
�� ������ ���� �� �	���
�
�� ������
�
�� � ��� �� �����

���� ��
�� �� ���

�� ����
� �
������ ��
� ���

�
�� � �
���
� ������� ��������� ��� ������ �� � ��� ����
������ �!���"���

���	��
�� ��� ����
���� ���

���� ������ �� ��
� ��
��� ��� ��� ���� �������
����� �� ����� ���

���� ��� �� ���������� ��#

������	��$�� % � ���
�
������� � ���

�
��������� �
�� �&�

��� ����
	�� �� ���� � ��������
���
������
��� �� ���� �� ������ ��� ����
�
����� ��
�� ��� ����� ���������� !
�

�
��������	��$��
� �'�
	����� ��

��

�
�� ���� ���� ��� ������ ��
�� � ����������	 ���
�� � ����
�� ()*� ����
��
)+ (),� ����
��)+ (&+� ���
���� �
�� ��� ��������
������ ������
� ����
����� ��
�
	� ��� ���� ��������
�� �� ��� ����� ��
�
����������
�� ��
�����
	�
��������
������
� �� ���
�� ������
� ���
��� �����
��� ��� �������
��� ��	�������
�	�� ����
�� �
�� ������
�
�
�� �
������� � ���	�� �� !!" ������ ���
��
���
���������� ����
���
���
� �
	�� �� ������� ��� ���� (,-+�

��� ��� ���	
�
�
 �� ������

� ���	
�	��
�

�� ��� ������ ��� ��� ��
�� ���
�
���
� ���

�

 � ,

�� ,

�
�
��� .���	��� ��
�� ��
�

���
�� ����
� ��� ��
��Æ�
��� ��� �
��� ��
��� �
/�� ��� ��
�� ����� 0���
���
��� ���
���� ����� �������
�� ��� ��� ���� ��1���# ��� ������
�� �
���
���
��
�
�� ��� ��	� � ���� ��1���
���� ��� �����
�� �� � ���
�� ������ ��� ��������
�
�� �
�� ������
�
��� ��� !!" ��
��
��� ������ ���� �� ������ ��� ��
� ���
��
�� ������ ��� ���� �� ������ ���� ����� ��� ��� ��
�� �� �� �������� ���� ���
���� ��������� ��� ������
�� �� �
�� ����� 1��
���

2�
	��� 3����� ��� ������ (4� ,,� ,*+ ����
�� ��� ������
 �� ����
��
�� ��� ���
��
��

����
����� ���� ���
	�� �'���
��� �� ��������� ��� ���

�� ����
�
�� �
��
��
�� �� ����
�� ��� ��� ��
��� ����� ��� �������� ������� ��� ���
����
�
��� ���� ��1����
�
� ������� �� ��� ���� ����
�
�� ��� ��� ��� ��
�� ����
1���
���
��
� ������� ��� ������ �� ��� 1��� ���� �� ���
������ ���
��
������� ���
������ �� ��� ������ ����� ����� ��� ��������
� ���� ��1����
� ���� �� ��� �
�
���� ����
�
�� �� ��	�
� ��� ������ ���� �� ���
������� 5
�
�
��� ������� (4�
,,� ,*+ ��	� ����� ���� ����
��
�� ��� ��
���

����
���� �
	�� ������ ���

����
�� ��� ��
��� �� ���
���� ��� ����� 6������� "�
���� �
�������� 7

��� �������
�
�� !!"

����
�� ��� ��
�� ����
1���
�� ��� ���� ����� �� 8
����������
�������� ���� ��� 6��� (,9+ ��� �
���� ��'�������

� ������� 	�
��
������

�� ����
��� � ������� ��
�� ��������� �� ������� ���� ���� ��� ������� ���
�� ������

���� ��� ��
� ����
����� �� ����
�� ��� �� �������
	� ���������
�
�� �� ����
����� ��� ���� ���� ���� ��������� �� ��� ���������� �� ����
��� �

� �� ��� ���� ����	
��
� ��� �
��� �� ��� ��� �
���
� �
�
�	���
�� ��� ��	� 	� �	���

6 1M inimum M e ssage Le ngt h Gro uping o f Orde re d Dat a

��������	��
� �	 ����
	�	��� ���
�	 ��
�
	�	��
	� �� � ����	��
� ������

	�
��	�� �� ��	 �� ���	 ����
	�	��� �	��	��	��

�	
 � �	 � ��������
	 ���	�	� ��
���	
 �� � ����	��
	�	��
	� �� ���	
����	���

� � ���� ��� ���� ����� ���

����� ������
� �� � ���
�
���� 	!����
��	 ��� ��
����� 	!������	 �����	
��

� � ���� ��� ���� ������ �"�

��	�	
�	 �	��	�� �� 	��� �� �	�	
	�	��
	� �� ��������	�� � ����� ��� �	
���	��	� ��
� �����	
	�� ���

� � ���� ��� ���� ������ �#�

��� ��$	�������

��� � ������ �%�

&� ���	 ���	�
�	 ����	� �� ���
���
 ��������	��	� ��� �	 �	��
��� �� '���
�� ���
 ��$	��
� ����� �� ����	��	�
��
 ���	 �����	
	 �
�
	�� (�� 	!����	 �
����	��
��
 ��
	���
	� �	
�		�
�� �����	
	 �
�
	� ����� �	 �	

	� ���	��	� ��
�����
 ����
�� ��
�	�
��� � ��������	��	� ����	 �����	
	�� ����� �	 	�
��
��
	� ��	� ���	 ��
�� '��� �� � ������ �������� ��
� �������
 �	
�	�
�
���
��	�	 �	
�	�
� ��	 ���	��	� �������
�� �� �)��$��)��	� *+� ",� -��	�	�

�	 ��	 �� � ��������	��	� �	���
� �� � ���	
���
���	 �����	� ��� �� ���
 ��

	�	����� ��	� ��� 	!�����
 �	
�	�
�
����)��	��	� �� ���	 ���	� �	 ��� ����

� ���	� ��
� ����� ��� �	 ������	�	� �� �����
 ���� � ����
��
 ����	�� ��
�	�

��� � ����	�� ��
� ���
���
 �
�
	�� &�
�	�	 ���	� �	
�	�
�
��� ��� �	 ��	�
�
��	�
��� �����!���
	�� �
�
������ �	
���� ��� �� �	�
 ���	��	� �� �����
 ����
� ���
���
 ��������	��	��

'�	 ���	�	��	 �����	� ��
� 	�
���
	 ���	 �� ��� �� � � � � ��� ��� � �������

� ���������	
 ���
����
� ��	
�� ���� �������	

��
��	��

&�
��� �	�
��� �	 �	�����	
�	 �	���
	 �	�

� ������� ��	�
� �������
	
�	
	!�	�
	� �	�

� �� � �	���
	 �����
������
�
�	 ���	� ���
�	 ��
�� .����	

��

�	 ��/	 	 ��
�	 ��
���	
 �� $���� ���
��	�� &� ���	� ��� � ����
�	
����
�	�	��	�
� �	���	
�	 �	���
	 ��� �	
��	�	
�	 ���
���� ��
� �	 ���
 	����	
�	
��������
� 0
�	 ����	� �� �	
�	�
�1
�	 ��
�����
 ����
����
��1
�	 �����	
	�
	�
���
	� �� ��� 	��� �	
�	�
 ��1 ��� 2�����
�	 ��
� ��� 	��� �	
�	�
 ����

�	 �����	
	� 	�
���
	� �
�
	�� 3	 ��	���� � ����

�	 ����	���� ��
� ���	 *+4
5, ��
���
� �	 �	���������	
�	 ���������
�	� �	����	 �	 $���
��
 � � 	�
'��� ������2	�
�	 �����	�
�
�	 ��	��2��
��� ���

6 2 Le igh J . Fit z gibb o n e t al.

� ��� ������	
� ���	�	�
� ����
� ��� �
�
����� ���	�
��� ��

� �
�
 ��� �
�� �����
��

���� �
��
��

� �����

 ����� ��� ������
 ��� �
����
�	
� ��� ��
��� ��

����
�� ����� ��� ����� ��
�	��� �� �����
� ��
�	
���� �
�
������ � � ���� � � � � ���
	��

������	�
 �� � � ���

�
����
������

� ���

�
!
	

�
�" ! ������
	�� �"#�

����� ���� 	�
 ��	�� �	���	$��	�
 ���� ��� 	 �
�
����� �
�����
����� 	� ���
�	%��	���� ��
��	�
 ��� ��� ������ � ��� 	� ��� ������	

� �� ��� �	���� &
����
�
�	�
 �
��	'

� �� 	�
 �
��	�� ��
��

� ��	�� �������
�� ��� �
�	
� ���� ���
(�

�	��� 	��	��
�	�

� ��
���
&
 ��	� �
��� �� ��
�	���)
���	

 �����
�� �	�� ��� ��
�	
���� �
�
������

�

� �� � � �� � � ��� � �� � ��� �� � ��� � ���� *�� �
��	�� ��
��

� �� �
�

��
�
�

�+�� ��� �	���� &
����
�	�
� � ���� ��� ��� ,���
� �	���	$��	�
 �"#� 	��

� ��� �� �
�	�

��
�""�

� ���
��
�	�� �����	%��	���� 	��

� ���
����� �� �
	

�
��� �� ! 	 ���� !

"

���

��
���

��� � -��
� �"��

*�� ��	�� �	���	$��	�
 �� ��� 	�
�
�	
����
�	�� $
��� �
 ��� �����
�	�

�
�	

��� ����� �

�

���
����

��� ��� � �����
� ����� ���� �

�

�

����
��� ���

�� ���� � ��� �
"

������
�".�

*�	� 	� ��� ��	�� ���� $/ 0�	���� 1
'���

� ������ �""� ����	�
 .�"�.� �.� "#��

������� ��� ��	�� �� ���� � ��� �

�

���
���

���� �"2� ����	�
 +��� �� ����� ��	���

�����
��� $� ��
�	������ �� ��� ��	� ��	��� ���� 3(�
�	�
 ".� ��
���� ���
 �
	�
����
�	��
 �	�� ���	� ��	���	�
 �.� ""� "#��
�� ��� 3(�
�	�
 "# �� ��
� ��� �
�
������ �� � ��� � ���

� �
�
 ��� �
��

�����
�� *� �
���� ��� ������	
� ���	�	�
� �� ���
 �	���� ���	
� ������
��
���	
� ��
� �
�� ���$	

�	�
 	� �(�
��/ �	%��/�

������	������� � ���

�
� � "

�� "

�

	�� �"+�

1
��� �
 3(�
�	�
 "#� ��� �'������ ���
� ��
��� �� ��� ����
�� 	��

������	�
 �� � ������� !������	������� �"4�

!
��
���

�
� ���

�
�����
�� � �� �����

� ����

�
!
	

�
�" ! ������

�

	��

6 3M inimum M e ssage Le ngt h Gro uping o f Orde re d Dat a

�� �� ���� �� ���	
	�� ���
����� �� �� � ��� � ��
	�	
	�� �����	�� ���
�� ����� ���������	
��� � �	��� � 	� ��	�� ������ ��
��	
�
 ����	�	�� ����
����	�� � !" #� �
�	� ��	� ������
 �$ ��

	�� ��� ������	�	�	�� �� ���
��	���
%%& ���	
���� �� �� ' ��� � ��"���������� �
�� ��� ����	��� ��������	�	���(

�	
����" '

�
� � �

�� �

�
�
���

�����	�
������ ��)"

����� �
���
���*�"� 	� ���
������ ������ �����	���� �	�� ��� 	�� ����

����	�	�� ���
 ���
�
� � �

�� �

�
����	��� ��������	�	��� ��� ���
����� �� ��� +�� �����

�	���� �	�� ���� ���� 	�� ��������	�	�� �	
�� �	
�� �����
��	��� ������	�	�	��
��� ��� ��
��� �� ���
���� ,�� -������	�	�	��. ��� �����
��	��� �������� ���
���� 	�� ��������	�	��� ��� -������	�	�	��. ����	��� ���$ ���� ���� �� ��� ������	��
����	�$ �� ��� �� �����	��� 	� ��� %%& ���	�� ����/�

#� ���	
	�� �����	�� �) �� ���	
��� � ,�	� ��� �� 	
���
����� �$
���
	�$	�� 0	����.� 123 �	
�� 	� 0	���� � �$ ������	�� ��� �	������ �����	�� �	��
�����	�� �4 ��� �����	�� ��� ������� ���� �� ��
 �
�� ��� ��������	�	���(

�5�� �6 ('���������5� � �� � � �6� �����	��� �""

�
�������������
��������
���
��7"

����� ��� ������� �����	�� 	� ���� �� ��
 ��� ����������	�	�	��(

���������� �" ' � �����

�� 8
��" ��9"

:�	�� �����	�� �) �� ���	
��� � �� ���� ���	
	�� �����	�� �� �� ���	
���
��� ��
�	�	�� ����
�����

� ��������	
�� �
����
��	

��� ������	�
 ��	�

#� ��� ��� 0	����.� 123 �� 	���� ��� ��
��� �� ���
���� �� ��� ������	��
���	�	��� ��� ��� ���
��� ����
����� �� �� ��
� ��������� ;����	�� ���� ,��
��	���	� �� �� ��
����� ���(

� %%&��� �����	��� �� ��� �) ���
 ��� ���
	��� ����	��
� %%&<=� %%& �����	�� �)" ���
 ��� ����� <�	
�� ��� =����� 5�46
� =�>� ��	�� � ��� �����" 8
�����������

� ����

� %1&� ��	�� � ��� �����" 8 ��
��
����������
� ���� 8 ���

�
�

�

�

� �������� ���	
��
��� ���
� �����
�������
� ���� ����
 ��

��
���
������	
���� ���

������
 �
�� ���� ����
������
 �
�� � �� ��� 	
����
�!��
������ ����
�����" �# �
����� ��$�� �� ���
���� �" ������
���� �$� ����
�� ��� �� % &�� � ��'�

6 4 Le igh J . Fit z gibb o n e t al.

��� ��� ��	
��
�������� ���� ��
��	�	 ���
� ����� ���� �����������	 ��	

������	 �� ������ ��	 ������ �� ! ���� "#! ��� ��� ���� ��� ����� �$ 	��� ����
��
����	��% &�� ��� ������	 	�� �� ��� ���� ���$�����
� �� �������� ������
�'! ��! � #% (� ����
� ���
��������!

�)�! �� ���$��� ������ ����� ��� 	���
�� �����! ��� ������ ��*� �� ����� �� ����� ��� �������������� ����+ 	��� ��

���%

(� ���� ��������	 ����� 	�,����� 	���)���� ��! �� ��	 ��-

� �� ��� .��	 �/� ��	 �/� ��	 ������)���
�	
��)������0 ������� �� ������ ��	
������ �� #%

� �� ��� .��	 �/� ��	 �/� ��	 1���$�����2 ���	����
�����
��)������ 1����)
��� ������� ��*� �$ '2%

� �� ��� ���	�� �/� ��	 �/� 	���� ���$����� $��� � ���#! ��	 1���$�����2
���	����
�����
��)������ 1������� ������� ��*� �$ '2%

3�� ��
� 	���)���! � ������� ���� ��������	 �$ ��*�� 4 ! 5 ! " ! �6 ��	 '4
��	 ���� ��
� �$ �%%7 ��������% 3�� �� ��	 ��! ��� ������
� �$ ��
� ������� ��
�% ! ��	 ��� ����� �$ ��� �������� ��� ��������
���� ��
������� �� �% %

��� �����	
���
� �������

(� ����
������	 ��� 	���
����
��	 	����� ��� ����������� �� ������- �
����
�$ ��� ������ �$ ����� ���
����
� ������ �$
��)������ ���� ��$����	 1�
���
����20 ��� ������� ������ �$
��)������ ��$����	0 ��	 ��� 8�����
+)������� 18�2
	�����
� ������� ��� ���� ��	 ��$����	 	�����������% ��� 8� 	�����
� ����� ��
��	�
����� �$ ��� ���� ��� ���������� $�� ��
� ������� ��� ����� ��������	% ����
���� �� �,�
��	 �� ��� ��$����	 ������ �$
��)������ ��	 ����� ���
�����%

�� ��	 ��� ���� ��������� ���)���$����	 �� ��� ���

� �����	�
1

�)� ��	

���2 �� ��� ��������% ��� �����������
��������� �� �������

�)� ��	

���%

9�� ��� �$ ��� �������
���	 �� ��
��	�	 	�� �� ���
� �����������% ��� 8�
	�����
� ��	 ������� ������ �$
��)������ $�� �� ��	 �� ���� ������	% 3�� �����
��� 	���)����! ��� ������� ������ �$ ��$����	
��)������ ��� �������� ������ $��

�)�! ��	 ��� 8� 	�����
�� $��

�)� ��	

��� ���� ���� ���� �������%

��� �
��� ���� ������� ���� ���� ��
��	�	 $�� ��� 	���)���� ��	
�� �� ���� ��
������ � �� 4% :�
� ����� ����� ��� ������ �$ ����� ���
����
� ������ �$
���
� ��� ��$����	 $��� ��� � ������ $�� ��
� �$ ��� ������ ��*�� ��	�� �������������
14 !5 !" !�6 ��	 '4 2%

�)� �� ���� �

����� ���� ��� �����
������� $�� ����
�� ��	 �� �� ��� �
��� ����% ��� ������� ��
������ �� $�� ��! �����

��� ��
��� ���� ���� �

����� ���� ��� �����
�������! ��� ��� �������	 � ���������
	��������������� ������ ���� ��� ������� $�� �� ��	 ��%

����� ' ����� ��� ������� ������ �$ ��$����	
��� $�� 	���)��� ��% 9��� �$
���
������� ������ �� �� ��
�������� ����).�����%

� �� ���� ���� �	��
�� 	��
��� ������ ���� ����� �	� ����
�� ����� ����� ��� �
������� ����������
�� ���
�� ���

�! ���! ����! ���! ��! �"� ��� ��	�� ��������
�� �	�� ������� ���#� �$ �	� �������� 	���
���

6 5M inimum M e ssage Le ngt h Gro uping o f Orde re d Dat a

����� � ��	
� ��� ���
��� ���������������
 ���� ��������� ��� ������
�
�������	�� �	
 �������� ��� ��� �� �������� ����� ��� ������
� �������	��
�	
 ����� �
� �	�������� �	
 ��� ������ �� �� ��� �
� 	��
��� ����! ��
�	
����
�"�����	����#
��� 	� ������ �� �� � � �$� ���%&! �'� ��� &�(�����
 �	
�
��� �	
� �	
 ����� ������� �� ��
�� 	� �	�� ��� ���� ��� ������
� �������	��

����� ��� �	���������# �	
 �� ��������� 	��
 ��� ��������� ��� �� ����
���#
���� �	 �	
� ����
����# ����
 ��� �����
 	� �����	���� �	
 �� ��� �� ���� ���
	���
 �
���
��� ���%& �� �	
� ����
��� �� ����

��� ��� �����
 	� ���� �	

�������� �� ��� ��� ������������# �����
 �� ��������� ���� �����! ��� �������#
�����
 �� ��������� ���� &�(��� �'��

��� ������	
���
�
	�� ������	������� �	
	

)� ���� ���� ��� ����� �
���
�	� �����	��� �� ���� ����
 �	 ������� ��� ����
���������*�
	� ���� ����
�� �	��� �� � �
	���� ��)� '� +����
,� 	
������
-./0 ����
 102� ��� '34 ����� 	�
 �
���
�	�
�� ����������� �� 5��� 6 �5���
���
�� ���� �	 �	�����
 ��� 	��
 -$�� �	������ ����������	�� ��	
 � � -$� 	� ���
���� ����!
��� � 7 .8 �� 6�- ���	��� 	� � 3������
������ �� 6$$ �������
� �
�� ����

�� ���� ���
� �
� 9�� ��������: � 7 /� 4 �
��� 	� ��� ����������	� ���
�� ���� �� +���
� ;� �� +���
� 0
� ���� ��������� ��� ���� ���� �� �	 ��� #��

-...�)� ��� ��� ���� ��� ����������	� ������9�� �� +���
� ; ��� ���� ����
���#
�"������ �� +���
� 0�

+����
,� 	
������ ����� �<��
�� �
	�
��
��

����� �	
 ��� =������> �������
�	�����
 �� ��� ?����
���# 	� �����	�� ��� �	��� ������ ���������
��� � � 6$$
��� � � -$
���
������ ���� �� �	 ���
	"������# -� ��������

� �������	��

)� ���� ������� ����
���� &�#����� �������� ���� �����
���	� �	
 �����	��� ���

�����
� �� ��� �
	����� 	
 ����������	� �
	����� ?����)� '� +����
,� �	�#�	�
���� ���� '34!
�
�
� ���� �	 ��
�	
� ���
	"�����	�� �	 ����
���� &�#�����
�����
���	� ����� � ������� ������� ������ �
���
�	� ������� �	 �������� ���
�����
 	� ��������� *����� �	�� ����!
� ���� ������ � ��� ����� �
���
�	�
�@<����	� -/� �	 �������� ��� ������� �	����
��� ���
������������� ��
���
���
 ������� ���� ������<��! �����!
�� �	���
��
��� ��
�� 	���
 �
���
��A
���%& 1--2! �'� ��� &�(� ��� �	���
��	�
�� ����� 	� ����
���� ����

��� 9"�� ���
���	� ��
�����
 ������� ?���� ��� +����
 '34!
�
�
� ���� �	
�"��
����� 	��
 � ��
��

���� 	� ���� ���� �
���	��
	
� 1B! --! -$2� ��� ���
�%& ��� ����� �
���
�� ��
�	
���
��� ���
�
� ��	
� �	 �� ����
�	
 �	 �'�
��� &�(� ��� ����� �
���
�	�! ����� &�#����� �����
���	�!
�� ��	
� �	 ����
	��
��� �	
�
 ���������������
 ��������� ���
�� ����
���# �����
 �� ����

��� ���
�����
 	� �����	���� ���� ��� 	���
 �
���
���

6 6 Le igh J . Fit z gibb o n e t al.

���� �� ���� �����	�
��
��
 ��
���� ���
 ����� ������ ���� ���� �� ���� ��	��
���

�� ���� ! "��� �� ��� ���� ���� #! $! %����� ���	�
���� ��
������� �
 ����!

���� �� ���� �����	�
��
��
 ��
���� ���
 ����� ������ ���� ���� �� ���� ��	��
���

�� ���� !

��	
� �� &������� �
����
�� ��

�� ��� �������� ��!

�� ��������� 	
 �
 �

�
 �	
 �����

 ����� �� �� ��

 �� ���

����� �� �� ��

 �� ���

��� �� �� ��

 �� ���

��� �� �� �� �� �� ���

 ����� �� �� �� �� �� ��

����� 	� �� �� �� �� ���

��� 	� �� �	 �� �� �
�

��� �	 �� �� �� �� ���

	 ����� � 	
 �� �� �
 	�	

����� �
	 �� �� �
 		�

��� �

� �	 ��
��

���

 	� �� �� �	 		�

� �����
 �
� �
 ��
�

�����
 �

 �
 ��
��

��� 	 � �
� ��

	

��� 	 � � �� ��
�	

� �����

 � �� ��
	�

�����

 	 		 �� ��

���

 	 �� ��

���
 � �

 �� �

� �����

� �� ��

�����

 � �� �

���

 	 �

���

 � 	
 �

� �����

 � �� ��

�����

 �� ��

���

 � �

���

 � �

6 7M inimum M e ssage Le ngt h Gro uping o f Orde re d Dat a

����� �� �������� ��	�
���� ������ 	�

�������� �� ��
 ��
������������

�� ��������� 	
 �
 �

�
 �	
 �����

 ����� �	 �� �� �� �� 	�	

����� 		 �
 �	 �	 �� 	��

���
� 	� �� �� �� 		�

��� �� �� �� �� �
 	��

	 ����� �
� �� �
 ��
�	

����� � � 	� �� ��
��

��� � 	
	 	� �� ��

���
� � 	� �� ��
��

� �����

 � 	� �� ��

�����

 �
� �
 ��

��� 	 � � � 	
 ��

��� � �
�
� �	 �

� �����

 �
� �	 �

�����

 �
	 �
 ��

���

 	 �

���
 	 	 �
	 		

� �����

 �
� 		

�����

 	� 	�

���

 	 �

���

 �
	

� �����

 � �

�����

 � �

���

���

 	 �

�� ��������� 	
 �
 �

�
 �	
 �����

 ����� �� �� �� �
 �� 	��

����� �� �� �� �� �	 �
�

��� �	 �� �� �� �	 	��

��� �� �
 �� �� �� �
�

	 �����

 	� 	� �
 ��
��

�����
� �� �� �� ��
��

���
� 	� 	� �
 ��
�

��� �
 �� �� �	 �� 	
�

� �����
 �
� �� �

�

����� 	
	 �
 �� �

�	

��� � �
� 	� �� ��

��� �

 	� �
 �

�

� �����

 	� 	� ��

�����
 �

 	� 	� ��

���
 � �

 	
 �

���
 �
�
� 	� �

� �����

 �
�
� �

�����

 �
� 	� �

���

 � � � 	

���

 �
	
	 	�

� �����

 � �
� �

�����

 � � 	
 �	

���

 	 � �

���

 � �
�

����� �� ���
��� ��	�

�
 �����
 �	 ���� 	�

������� ���

�� ��������� 	
 �
 �

�
 �	

 �����
�
�
 �
���
�

 �
���
�
�
 �
���
�

 �
�

�
�
 �
���

�����
�
�
 �
��

�

 �
��

�

 �
��

�

 �
�

���
 �
��

���
�
�
 �
���
�
�
 �
�	

�

 �
�

�

 �
�

�

 �
�

���
���
 �
���
�	

 �
���
�
�
 �
���
�
�
 �
�		
�
�
 �
���

 �����
���
 �
��

���
 �
���
���
 �
��	
���
 �
���
�
�
 �
���

�����
���
 �
���
���
 �
���
��

 �
���
���
 �
��

�
	
 �
���

���
���
 �
��	
���
 �
���
���
 �
��

��	
 �
���
���
 �
���

���
���
 �
���
���
 �
���
��

 �
���
��	
 �
���
���
 �
���

	 �����
���
 �
���
���
 �
���
���
 �
�
�
���
 �
���
���
 �
�	�

�����
���
 �
���
�

 �
���
�
�
 �
���
���
 �
���
���
 �
��

���
���
 �
��

�

 �
���
�
	
 �
��	
�		
 �
���
���
 �
��

���
�

 �
��	
�	�
 �
���
�	�
 �
���
���
 �
���
���
 �
��	

� �����
���
 �
���
�
�
 �
���
���
 �
�	� 	��

 �
�	� 	���
 �
���

�����
���
 �
���
�	�
 �
�
�
���
 �
�

 	�
�
 �
��� 	���
 �
���

���
���
 �
��

�

 �
���
��	
 �
�
�
���
 �
��� 	�
�
 �
���

���
�		
 �
��

���
 �
�
� 	�

 �
�

 	�

 �
��	 	��	
 �
���

� �����
��

 �
��

�

 �
��� 	�
�
 �
�	� ��
�
 �
��� ����
 �
���

�����
���
 �
���
���
 �
�	� 	��

 �
�
� 	���
 �
��� ���

 �
���

���
���
 �
���
�
�
 �
�
	
���
 �
�
� 	�
�
 �
�
� 	��	
 �
�
�

���
�
	
 �
���
���
 �
�

 	���
 �
�
� 	���
 �
�
	 	��

 �
�
�

� �����
���
 �
��	
�
�
 �
�
� 	�	�
 �
��� ���

 �
��� ����
 �
��	

�����
���
 �
��	
���
 �
��� 	��

 �
��� ��	

 �
��� ���

 �
���

���
���
 �
�
	
��

 �
���
���
 �
��� 	���
 �
��� 	���
 �
�
�

���
�
�
 �
�
	
��

 �
��
 	��

 �
��� 	���
 �
��
 ���

 �
�
�

� �����
���
 �
��

�	

 �
��
 	���
 �
��� ����
 �
��� ���	
 �
���

�����
���
 �
���
��

 �
��� 	��

 �
��� ���

 �
��� ��

 �
���

���
���
 �
��

���
 �
��� 	�
�
 �
�	� 	��	
 �
��� ����
 �
�	�

���
�

 �
���
���
 �
��� 	���
 �
�	� ��	�
 �
��� ���

 �
�	

6 8 Le igh J . Fit z gibb o n e t al.

����� �� ���������	
���
�
������
� ���
�����
� ���

�� ��������� 	
 �
 �

�
 �	

 �����
�	
� �
���
�
�� �
�
�
�
	� �
�
�
�

� �
�

�

� �
�
�

�����
��		 �
���
�	�� � 	�
�
�
�� �
�

�

� �
�

�
�� �
�	�

���
��
� � 	��

�	�� � 	�

�

� �
�
�
�

� �
�

�

� �
�
�

���
�
�� � ��
�
��	
 � ��	�
�
�	 �
�
�
�
�� �
��	
�
�� �
�	�

 �����
���� � 	�
�
�	�
 �
�	�
�
�� �
�	�
�
�� �
���
�
�	 �
���

����� ����
 � ���

��
	 �
��

���� � 	��

�	�� �
���
�
�
 �
���

��� ����� � ����

��

 �
���
���� � 	���
�
�� �
�	�
�
�� �
���

��� ����
 � �����
���� � 	�
�
��	� � ��	

�
�� � ���	
�
�� �
���

	 �����
���	 �
���
���� �
��

�	�� �
���
�
�� �
��

�		� �
�
�

�����
���� �
��	
���� �
�		
�	�� �
���
�

� �
�	

�
�� �
�
�

���
���
 � ��
�
�	�� � ��
�
�	�
 �
��

�
�� �
�
�
�
�� �
�
�

���
��	� � ����
���� �
��

�
		 � ����
�
�� �
���
�
�� �
�
�

� �����
��	
 �
���
���� �
��

�	�� �
�	�
�
�� �
�		
�

� �
�	�

�����
�
�
 � ��	�
���
 � 	��

��		 �
���
�
		 �
�		
�
�� �
��

���
��	� � ��	�
���� �
��

���
 �
���
�
�	 �
�	�
�
�� �
��

���
���
 � ���	
���� �
�
�
��
� �
���
�
�� �
��	
�
�� �
���

� �����
���
 �
���
��
� �
���
���
 �
�	�
�	�� �
���
�
�� �
�	�

����� ����� � �
�
�
�
�
 � ���

���� �
��

���� � ���	
���	 � ��
�

��� ��

� � �
�	

�
�� � ����
��
� �
�	�
���� � ���

�	�� �
��

��� ���

 �
���

�
�� � ���

���
 �
��	
���� � ��
�
�	�� � ����

� �����
���
 �
���
���	 �
���
���
 �
��

�	�
 �
�	

�	
	 �
�	�

����� ���	� � 	��

��	� � ��	�
���	 �
�
�
�
�
 � ����
�
�� �
�
�

��� 	�
�� � ���� ��	�� � 	����
���� � ����
�
�� � ����
�

� �
�
�

��� 	���� � ���� ����� � 	����
��
� � ����
��		 � ����
�	�
 �
���

� �����
��		 �
���
��
� �
���
���� �
�	�
�	�� �
�
�
�	�� �
���

����� ����� � �
�		 ����� � 	��
	
���� �
���
���� �
�
�
�	�� �
��	

��� ����� � �
�	
 ����
 � 	���

��
� �
��

���� � ����
�
�� �
��	

��� ����� � 		��	 ��
�
 �

���
�	
� � 	���
�		� � ���	
�	�� �
�	�

� ������� �	�
 ��
 ��
�	���
������

�� ���� ��� 	
����
�
�����
����	 ��� ��

 ��� ���
��� ��
���
� ��� �
��
�� ���
������
���� ��� ��

�������
�
�� 	
������ �
��� ��
�	
���� ������� �
���
�
�
������	 �� ��� ������
�� ���
�
���� ��
����	 �� ������� � ���� ���

�
�
�����
�
���
��
��� ��� �
������� �� ������
����
�� ��

 �� ��� ����
�� 	
���
���
��! ""� �����
�� ���� ���� 	��
��	 ���

	
������ ��
�
������ #$%&! '�
����! ��� "
��� �
���
��! ��	 �����
��
 (
���� 	
���
�
���
��� #)$! *&� +��� �� ����� 	
���
���
��� ��	 ����� ��	�
� �

 ��
����������	

� ��� �������
�� ����� ,��� "����-
� ���
����	��
�� �� �� ��� �� ,� (
���� .$/012

����� ��	 3���� 4����� ��	 5������� 6

��� ��� ����
	
�� ������ �� ��� 7
��	� ���	
� 4�����! 6

��� ��	 ��

��� #$8&�

����������

�� �� �����
� ����������� ��
��� ��
 ��
��
����� �� ��
 ������� ���
�����
 �������

��
� �� �� �� �
��� ��
 !� "����#

�����# ���������	
�� ������
����
� ���������

�� ������
���� ������# ��$
� %&'(%)�� ���

��� ���
�# ��
��
��# �*'+�

%� ,� �� ����
� ��
 -� -� .��
�� /0	 ��
 //	1 2���������
� ��

�3
�
��
�� 4
���

����� �
���� 4, %5'# 0
��� �� "�����
� 2��
��
/����� 6��
�����# "������#

7������� +�&)# ���������# �**8�

6 9M inimum M e ssage Le ngt h Gro uping o f Orde re d Dat a

�� �� �� ����	
 ���
�
� ����	
� ��	 ����	�� ���� ������� �	����	 �	���� �	��
�	�������� �� �� �
����� ��� �� � ���
��! 	����
�! ����� ��� 	
�� ����
��� �

����������� ����
�
� ������! �����	 ""#$ �% ����! &��	� '�()$� �&
���	
�*	
���
�	
���! "))#�

+�
�,� -����. ��� /�
�� �����	� ������ �����
�
� �������
 �
� �����
� �&
���	
�
*	
���! 0�����! ")''�

1� 2� 0� 2��	! �� �� ����	
!
�
� ����	
! ��� -� �� 3�����	� 4���� 	���������
����� ��	 ���5����0	�5�	
 ���� %������� ��� 660� �� ���� �!�
�� ��
"���
�� �

#
�$����� %�
��&��� �
� %��� '�
�
� (��#%%)*+! �����	 "�)+ �% ���	! &��	�
'7()1! "))'�

#� 2� 0� 2��	!
�
� ����	
! ��� -� �� 3�����	� 660 	��������� �% ��	 &�
��	�	
� �%
��	 �&�	
���� 8���	
 ����
�5������ �� �� �
����� ��� �� � ���
��! 	����
�! �����
��� 	
�� ����
��� �
 ����������� ����
�
� ������! �����	 ""#$ �% ����! &��	�
9"�(997� �&
���	
�*	
��� �	
���! "))#�

7� �� :�����	 ��� 0� �������� 660 ��
��� ������;������ �% �	<�	����� ����� �����
���

�
� �������
�!)�9#)(97'! ")))�

'� 3� 2� 8���	
� �� �
��&��� %�
 ������� �����	�	��.� ,�
�� ��� ����� ����!
1��7')(7)'! ")1'�

)� �� :� ��� ��� �� :� ��%�	
.� ��.	� %����
�� ,���
�� �" ��� �������
 �����
�����
�

�������
!)$=+�$>�77�(7)1! "))1�

"$�
�
� ����	
! �� �� ����	
! ��� -� �� 3�����	� 6������ �	����	 �	���� �	��	����
����� �� ?� 3�! �� �����
�! ��� � �
5! 	����
�! -�
����� �
� %�&������
� �

#
�$����� %�
��&��� �
� %��� '�
�
� (��#%%!)*+! &��	� '�()$� �&
���	
! "))'�

""�
�
� ����	
 ��� -� �� 8�
5	�� ��.	���� �&&
����	� �� �	��	����� � ���&�	 ���	
�	
�	�� �	������� �	&�
�)7@��#! 2	&�� -��&��	
 ���	��	! 6����� A���	
���.!
����
���� �"#'! 2	�	�5	
 "))7�

"9�
�
� ������	�� 6��	���� 5. ���
�	�� ���� �	��
�&����� ����������! "+�+#1(+7"!
")7'�

"��
�
� ������	�� � ����	
��� &
��
 %�
 ���	�	
� ��� 	��������� 5. ������� �	��
�&�
���� �	����� �

��
 �" �����
���
! ""=9>�+"#(+�"! ")'��

"+�
�
� ������	�� ,.&���	��� �	�	����� ��� �	����� 5. ��	 620 &
����&�	� ��������
,�
��! +9=+>�9#$(9#)! ")))�

"1� B� �����
C� :��������� ��	 ���	����� �% � ���	�� ��� �

��
 �" �����
���
! #�+#"(
+#+! ")7'�

"#� �� �����	� ���	��	
�	� �	��	�������� � ���	� ��� � �	����� 	
"�������
 ����
��
!
9)�7(91! ")'��

"7� 6� *����������! -��� 3�����	! 2�0� 2��	! ��� � �
5� 8������ ���&����� ��
����. 5���
. �	<�	��	� � �
	���	� 	�&�
���� 	���������� �� ./�� ��
������
 ,��
�
��
"���
�� �
 ���� ���� 	
�������
��! ")))� � �	<�	� ��� 5		� ��5����	� �� 6�����	
0	�
����
��
����

"'� -� �� 3�����	 ��� 2� 6� �������� �� ��%�
������ �	���
	 %�
 ������;�������
�������� ,�
��! ""=9>�"'1(")+! ������ ")#'�

")� -� �� 3�����	 ��� 2� 0� 2��	� 6������ �	����	 �	���� ��� ������
�� ����
&�	���.� �������� ,�
��! +9=+>�97$(9'�! ")))�

9$� -� �� 3�����	 ��� 2� 0� 2��	� �	D����	
� �������� ,�
��! +9=+>��+1(�17! ")))�
9"� -� �� 3�����	 ��� 2� 0� 2��	� 660 �����	
��� �% ����������	! 4������! ��� 6��	�

��
����
 ��� B������� ����
�5������� �����
���
 �
� �������
�! "$�7�('�! 9$$$�
99� -� �� 3�����	 ��� 4� �� 8
		���� :��������� ��� ��%	
	��	 5. ���&��� 	�������

=���� ����������>� ,���
�� �" ��� -���� �����
����� �������
����
 0! +)�9+$(9#1!
")'7�

7 0 Le igh J . Fit z gibb o n e t al.

�������� ��	
 �	��
��� ��� ��������� ���
�����

������ ���	
���
 �����	�� �����
 ��� ���� ������	�
����	
���
�����
������	���������

������ ��	��	

��
�
 ������ ���� ����
 ���������� �� �����

	�� ���������� �!	���� �� �	����
 ����� "

�����

��������� �� #	�$ #	%!��� ��	����& ������&�
 �'	#���� () (�� %�	��
*%	���� �(������ %�	��+ 	�� �	���$ 	�	��	,��- ���(
 ���	,���� �	�	 	�� 	,��.
�	��- /� �������&	�� �� �!�� �	��� �!� ����&� () ��	����& 	�&(���!#�)�(#
�(������ 	�� ���	,���� �	�	 (��$- 0	�$ #	%!��� ��	����& 	�� �	�	 #��.
��& 	�&(���!#� ��� �'	#����)(� ����#	�� () ��(,	,�������- 1!���)(��
 2�
����&� 	� 	�&(���!# 2!�%! �� ,	��� (� �(������ ��	�����%	� ������� *����.
#	���)(� ��(,	,������� (��� �!� ��� () �(������ ����	�%��+ 	�� ����	�%�
��	�����%	� ������� *����#	���)(� ��(,	,������� (��� �!� ����	�%� ��	%�+-
3�� 	�&(���!# &������ �!� 2��&!� () �!� �	�&�� %(�%��� *�!� �	��(() �(��.
���� ����	�%�� �� �!� ����	�%� ��	%�+ 2��! �!� !��� () 	 !$�(�!���� ������&
	�&(���!#- �� �� ��(��� �!	� 	�$ %�	�� ��	��	,�� �� �!� ��	�����%	� 4���$
#(��� 56�	7"8 ��%! �!	� 	 �(2�� ,(��� (� �!� 2��&!� () 	�$ �	�&�� %(�.
%��� � %	� ,� ����#	��� �� �(�$�(#�	� ��#� �� ��	��	,��)�(# �(������
��	�����%	� ������� 	�� ����	�%� ��	�����%	� ������� (��$- 1!��
 2� ����&� 	
��%���(� ���� ����%��(� 	�&(���!# �3��9-:
 ,	��� (� �9-: 54��7"8
 ����&
(��$ �(������ 	�� ���	,���� �'	#����- /� 	��(&��� �'����#���	� �������
)(� �!�� 	�&(���!#-

� �������	�
��

�� ���������	
������
� ��� ������� ���	�
 �� ������
 ���	�	�� �������
� ���
�
��� �	���� �������
� ��
	�	�� �������
 ��
 �����	�� �������
 ��� ���
�����
��� ����	�� �����	�� ��

��� �	�	�� �����	���

��� �

��	
	�� ���� 	�
���	��
�� ������ �������
� ���� ��� ���� �����	�� ��
�
� ������
 �������
 ��� ���� ��	��
�������
 ��������
 �������
 ��� ��
	�� ���	������ ��
��
���	�� �������
�
� ���
������� �� �����	�� �	�� ��� ���� �� ��������

��� �	��� �
����
�� �� ������

�������
 ��

��
	�
 �� ���� ��
 �	������ ��� !"� #����
	�� ��� �	��
 ��
�������
 ���� ��� ��
��
��� ��� ��� ���������
� ���� �����
 ���� ��������

�������
 ��� ���
� ��������� $����	��
	����	��
 ��� ��	�� ��� �

����	�� 	

��	
��
 ���
�
��	��
 	� ��	� "�

� ���� �������� 	��
�������
 ��

����� �
 ���������� �� ��������� � �������
�� ���
������� ������ �������������������

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 7 1 - 84, 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

������� ����	��
 ��� ��	��

�� �� ����
� �����
� ���� ����
�� ����� ������
� ������ ��	���� ���

��
 ���� ����	��
� ��� �����
��
�� �
 	�

�
�� �� ����
��
��� �� ����� �����
� ���� ����
�� �����
��
���
��
� ����	��
 � ��� � ���
�!� ���

�
 ��� �������� ��� ����	� "��� ��! ��� !� ���� ��

 ���

 ��� 	�

�
��
���

� � ��
� ����	��

 !���	��� ���

����
��� #�		�
� !� !��� � 	������ ����
���

��
 !��

��
 �
 �
�����
�
��� �� � !�� �
��� $�

�
�� ����	��
 ��� �����
���
�����%
�

 ���
�� � !�� 	���
 �����
	���
�� �� !��

��

� �

 ���&���&
�
'������� ��������� !�� 	���
 ��� ��������� (���� ����	��
 ���%

� �
����

 � �

��
�
% 	�

�
�� ���� ��� 	��
���
 !�� ���� ��� �

��
�� �����
����� ���� ��� ��� 	��
���
)

� ���&��
��% 	�

�
�� ���� ��� ��
���
 !�� ��� ��� 	������� ��������� ���� ���
��� ��
���

� ��� ������
��

(�� ��	����

 ���� �� ���
���
��
 !����
�

 ��	��

�� �� �
*���� �� ����� �

�� �
�
�����

� ����� �� ����
� � �����
��
��	��� +���� ���� !� �����

 ���
	������ � �����
�� !
�� 	�

�
�� ���� ��� ��������� ���� ����� ,� � 	���
��

	�	�� -../�001� !� ���� �
��� ��
����� 2 !
�� ���� �������
��� ��� ��	
�
���
��������
 2 ���� 	�

�
�� ����	��
 ��� ��������� ����	��
 ��� ���
� ��������
� ���� ����
�� �����
�� �����
���
� ,� !�
 ����� ���� �����
�� !
�� 	�

�
��
��� ��������� ����

 	�

��� �

��� �
 ��� !�
��� � ��� ������ �����	� 3
���
��� ���
� � 	�

�
�� ����	��
4

 &��!� �� ��� �������� �� �
�
���� � ��� !�
���
��� �� ����
��� ��� �
����
�� � ������� ����	��
� 5��� !
�� � ��	����

��
�
�� �����
���� !� 	��
��� �����
�� �����
���
 !�
�� ���� �
� 	�

�
�� ���
��������� �����

+�� �������
��� ����!��&

 	��
�����
� #���
�� 6� (�� �����
�� �����
���

 ������ ��� 	�����
� #���
�� 7� ,�

 �		�
�� �� ����
�����
��
� #���
�� 8

� �������� 	
���

� �������� ��
� �

����� ���

��������� �������

��� ����	
	� �
���� ��
� ������� ��������

"
�
�� ��� �
 ������ ��� �������� ������	
�����
����
�
���� 3$�9 ����� ��

����4 ������ �� :��
��� -:��;81� ,� ��� $�9 ������ �� �����
��� ����
�
 �
�
���� <=�>?������� ����
�� ��� � �
��� �����	� ���

 ��� � �

��
���
�� ����
���
�
�����
	���� +�� ���� � ��� �������

 �� ���	��
� 	������
�� �
���
!
�� �
�� 	�����
�
��� � ��	����

 !
�� ��� ����!
�� 	��	����% ��� 	�����
�
��

���� ���� ��� ��	����

 �

�����
 !
�� ��� ������ ����
�� �� �� ����	��
�������� ���
�� ������
�� �� ��� �

��
���
��� +�� ������� ���

� �����
��
����� ��� ������ ����
�� ��� ��� �
���� �

��
���
�� ��� �� ����	�� �������
+�� $�9 �����

 ��� ��

� �����
� 9��	����
���� �����
�� +����� -@:081�
'��� ���
���
 � ��� ����� ���� ���� ���

����� 3
�� ��� ���������� 	�	�� �
5��

���� @����
� �
����
���� ��� ������� -5@��0>14� "��
�
������
� ��� ����

������
����� ����� ���
�	����� �

��
���
��
 ��� ����	�� ������
 �� 	�

�
��
��� �����
�� ����	��
 � � �����	�� ,� !�
 	����� ���
������ �� ��� $�9 ������

7 2 Fabie n Le t o uz e y e t al.

��� ��������	
� ���
�� 	
��� �� ���� �� �� � �
��� ���� 	
���� ������
�
�� �������
��� �� ����� ��� ����� ��
����� ���� ���� ����
	 ���	��� 	��
�� �
������� ���� ����
	 �
���� ���� �������� ��� ������������	 	���
 ���
�

�� 	
��� �
� ��
��� ��� ��� �� ��� �� ��!���� ��� "���� #�"$$%� &�
����
�
 �� �� ��� ����� �������! ��!
����	� ����� ��� �
���� �
 ������ ����
� �
����
'����� #'��()% ��� �� ��� ��� �����������
�
�� ���
� *+, 	
��� �
� ��
���� &�
���� 	
���� ��� ���	���
����� �� �������� �� � ���-��
����� ����� ��
�����
����	���� �
� ��
����������
��� ��� ��	��� ������ &� �� ����� ���� !���� ������
�
 ��� ���	���
������ �� �� ���� �
 ��	����� ��� ����������
����� �� ������! �
��.������� ���!� ���
� ������� ���	����� ���� ��� ����� ��������� ��
	 �����������
/������ ��
�� ���������� ����� �� � !������ ����	� ����� ������
�	� ��� +,
�������! ��!
����	 ���
 �
�� �������! ��!
����	� &� �� ���
 ��
��� �� #'��()%
���� ��� �����
� ������ ������
�� �� ��������� �� ���
�� 	
��� ��� ����
� ��
������� ��
	 ����������� /������� ���
 ��� ����� ��������� ��
	 ����������� /������ ��
��������� ���� ������ ����
� �
���� ��� +, 	
��� ���
�� �
 �� �� �
�����
������
�������! ��!
����	� ������� ����� �� � !������ 	���
� ����� ������
�	� ��� +,
�������! ��!
����	 ���
 � �� �������! ��!
����	� 0��� 	������ �������! ��!
�
����	�
��� ��� ���	���� ��
���� �
 ����	��� ��
����������� ���� ���� 	�� ��
������ �� +, �������! ��!
����	�� ���� �� ��� ���� �
� �������
� ���� ��!
����	�
���� �� �1�2 #,��()% ��� ��3� #45�+$1%�

���
 ����������! �
�
�� ����
�� �� � �������
� ��� �� 	
���� ��	��� ���
��	���	����������	 ������������	 	���
 ���
� *�
�� 	
��� �
� ��
��� ����� ���
�� ��� �� 6������ #6��(7%� &� ���� 	
���� ��� ������� ���	��� ����� �� ������
��
��� ���
 � �
������ ��	���
� ��!�
��� ����
� ����� 	�� ���� � ��8�����
�
��� ����� �� ����������! ���	��� �� ��� ���� ����� ��� ����
� ����� �
������ ���
�	���� ��8��� ��
	 ��� ����
� ����� ��!����� ���	����� 5
��
���! ��� �������
�
'������ �� ��� ��
��� �� 6������ ���� ��� ����� ��������� ��
	 ����������� /������
�� ���
 ��������� ���� �
��������������
� ������ ����
� �
���� ��� ��

� ���� ���
������
��� �
���	� ����
��� 9 � ���
������ ���� �	��� ���
� ��� �� �������� ��
	 �
���
� ���
������ �� ��������! ���
�� ���� ��� ������ ���
��
� � ���
� �
��
�
������� ���	�����

&� �� �
����� �� ��� �
����
�� ��� ��	�
� ��� 	
��� ��� ��� ���
� ���������
�������� �� ��� ����� ��� �
��
���! �������
��9

�� � ���� � �� � ��� *:�

�� � ��� *;�

�

�� -�
����!�� ��� �/���������� ������� ��� 	
���� �� ��� +,
� ���
����� ��� 	
���� �� ���
�� ��	���
��� ������� ������ ����!��� #4'<==%
��� #>��==%�

��� �������	
���
� ���
 �������� ��� ��
���
�� ���
�
��

��� �
��	�	� ���
� ���� �������

�����
� *
�+?@ �
� ��
��� ��� �� ��� ��
6���� #6��($%� ��� 	
��� �� ��	���� �
 ���
�� 	
��� ���� ��� �
��
���! ����
�������9 ��� ������� !��� ���
�	���
� ��
�� ��� ���!�� ������
� ��� ��� ������

7 3Le arning Fro m Po sit iv e and U nlabe le d Example s

�����������	
��� ��� ��
����� 	
����
 �������� ��	
��� ��	
��
	�
	 ����	�
�

��	
��� �� �
�� ������� �� ��� ��
�	��� ��� �	��
	�� ��
��� ��
��
	 �����	� �

��� �	��
	�� ��
�� � � ����
	 �	�
����� ��
�����
������	� �� ��� �����	 �������
�����	 �� �� �
�� ������� �� ��� ��
�	��� ��� �������� ��
���� ��
��� ��
��

�������� ��
����
������	� �� ��� �����	 �����������	 �� ����� � �� ��� �
����
��	����
	� �� �� ���	�� ���

�� ��� �

�
��������� �
 � � ��

� ����������
��

!� �
� ����	 �	 "#�	$%& ��
�
	� ��
�� ��
�	
��� �	 ��� '(') ����� �� ��
�	
���
�	 ��� (*+,- ������ .�� ��	� �
 ��� ����
 �� �� ��
� ��
�����
��� ��� ��������
��
��� ���� ����
������ ��� ����
 �������� �
���
	� ��
�����
��� ��� �	��
	��
��
��� ���� ����
������ ��� ����
 	��
���� �
����
	� ���	 �� ���
 '(')

��������� /� ���� ��� ����
 ������ �	 ��� ���������� �����	�
�������� �	 ���
	��� ������	�

.�� ��	�����
���� ���
 �������� ������� �(*+0
�� ����� �
�
��� ���	��
�	 "#�	$%&� !	 ��� +0 ������ ��� ��
��� �������� �����
���
�� ����
��������
��
�����	� �� ��
������
� �������� /� �������� ����
� ���	����	� �
 �������� ��� ��
�� �
�� �� ���� ��
� �� �� �����
��	� �� ��	������	�
 ��
������
� ��
��� �����
��������� �����	
 ����	 �����
	�� � � �����
���
�� ����
�������� ��� � 	�
	�
��� � 	� ����� � �� ��� �
���� ��	����� � ��� ��������	�
	� 	
	� ������ 1

�� ����� ���������� �� �����
��� �	 ����	���
� ���� 1 �
 ��� �	��
	�� ��
���
!	 ��� (*+0 ������ �����
��
 �������� ��
������
� ��
��� ����� �������� �����
�
���
�� ����
�������� �� �	�
	�
	 �	��
	�� ��
������
� ��
��� ����� ��������
�����
���
�� ����
�������� ��	� �����	
 ����	 �����
	��� !� �
� ����	 ��
�
	�
��
�� ��
�	
��� �	 ��� +0 ����� ���� ��
� ��� ������ ���� �

	� �
���� ��	����
� �
	 �� �����
��� �	 ����	���
� ���� ���� ����� ��� ��
���� �� ��
�	
��� �	 ���
(*+0 ������ !� �
�
��� ����	 ��
� ��� ��
�� �

�#)2
	� ��� ��
�� �

�#3

�� ��
�	
��� �	 ��� (*+0 ������ .� ����
��4�� ���
������	� �	������	� �����

��
� �
� � ���� � ��
�� � �	� �5

���� � �� � �	� �6

� � ��
�� � �	� �7

.�� �	���
���� ������	 +0
	� (*+,- �� ���
��� ��� ��
�� �
 �
����
�	����	� ��
�	 (*+,- ��� 	�� �	 +0� .�� �����
��	��� ������	 (*+0
	� +0
	� ������	
(*+,-
	� (�' ���
�	 ���	� /� ��	8������� ��
� ��� ��
�� �
 ��������	�
��
���� �
 �
������ �� (�' ��
�	
��� ��� 	�� (*+,- ��
�	
����

� �������� 	
�����
� ���� �������� ��� ��
���
��

�������

/�
������ �	 ��� �����	� �
���� ��� �����	 �
 �
���	� ��
�	�	�
��������� ����
��������
	� �	�
����� ��
����� ��
� �
	 �� �������� ���	�
 ��	��
� �������

��� ��
�	�	�
��������� �	 ��� +0 ������ /� ��
	�
��� ���
�������� �	��

�������	 ���� �	������	
�������� �	 ��� 	��� ������	�

7 4 Fabi e n Le t o uz e y e t al.

��� �����	
����� �
 ��� ���������

�� � �����	
� ����� �

������ �� �	�������� ��� ��	���� 	� �������� ���� ���
���� 	� �	������ ���
�������� ����� ����� ������ � ����� �
���� 	� �������
��������� 	� �� �������� 	� ��� ������ 	� ��� ������ �	������ �� ���������
������������ ���
��� ��	���� ���� �	������ �������� ���
�������� ���� ���
� ������! �		�� ���
���! 	� ��� ����������� "
��! �������� ���	����� �	� �	�	�	��
�	�#
����	�� �� ��� �������� 	� ������$����	� �	���� ��� ������������ ���
��� �	�
������	� ���� ���
���	��
���
� �
��	�� ���� � �	����� ����� � �� ��������� �� ��� %& �	��� �! �

�������� ���	����� � ��� ��� � �� ��� ������ �	������ ' ����������� "
��! ����
�! ��� ������� ��	����� ��������� 	� ��	���������� ��� � �� ��� ��� � �� �	�
�	�� �
���� � 	� ��� �������� ����� ��	��� �! ��� �������� (���� ��	����������
���	� �	 ����� ��� �	��	���� �"
���	��)�

��� ��� � ������� ���

��� ��� � �������� � ��
*+,

�� ��� ��� �� ��������� ���� ��� �	������ ����������� 	������ ���� ��� �� ����-
����� ���� ��� �������� ����������� 	������ .	���"
����!� ����� �� %& ���	������
�� �� "
��� ���! �	 �	���! �� �� 	���� �	 	����� � /0%& ���	����� ��	����� �� ��-
������ 	� ��� ������ 	� ��� ������ �	����� ����� 1��� �������� ��� �� 	��������
������ �! ����� ���	�����	�� 	� ���� ��� ���� 	� � ����� ��� 	� ������� ���������
2���� �� �
��	�� ���� ��� ������ 	� ��� ������ �	����� �� �	� 3�	�� �! ���

�������� 1�� ��	���� �� �	 ����
���� �� �������� 	� ��� 1��� ��� �� �	�� �� ���
/0%& �	��� �	� �	�� �����$� ������� 	� �	�����) �-
45� �-
� *��� �
���6�,
�
� 	
� ��� �� �	 ��$�� � ������� ����	� ���� ������	��� �� %& ���	�����
���	 � /0%& ���	������ 0
� �	�
��	�� ����� �� �������� �� ��� ���� �����	�� ��
�� ���	����� ����� �
����� ��� ������ 	� ��� ������ �	����� ��� ���� ������� �
�!�	������� 1�� �� �
��! �� ���� ��� �!�	������ ������� ���	����� ��� 	��!
��
���	�����	� ��� ��� �	������ ����������� 	����� ��� ��� �������� ����������� 	������

��� �������� ���������
��� �������� ����������� �
����� ��	

�������� ����������� �
�����

���
� �	������ � �	����� ����� � ��������� �� ��� %& �	��� �! � �������� ���	-
����� � ��� ��� � �� ��� ������ �	������ �� ������ � /0%& �������� ���	�����
����� 	� ���	����� �� �� ��� /0%& �	���� �	� ��! �
���� � 	� ��� ��������
������ �� ��� ����
���� �������� ��� ��� 	� �� ��� ���� ��� �	������ �����������

	����� ��	�	 ��� �������� ����� 	� ���� ���� ��� �������� ����������� 	�����

�	�	 ������ � ����� �	�������� 7	��	���� �� �
��	�� ���� ���� � ��� �� ���
���� � ������� �	
�� � �� 3�	�� �	� ����� ���� �� �
 � � ���� � �� ��� �
�� ��� ������� ���
���! �	� ��� ���	����� ��� ��� ���� �� � "
�����! �������
���� ��! 	� ��� �	�������� � ������ �! � *�
� ����� �� ������� �	�!�	���� ��
��� �������� ��	���� ����������,� 1�� /0%& �������� ���	����� �� ����� ��
5��
�� 8�

7 5Le arning Fro m Po sit iv e and U nlabe le d Example s

� ����������� �	
���
����
 ��
��
 �������
 � ����� ����	 ��
�� �����

�	
��
�
��
 ������
 �� ����� � �
��
�� � ����� ���
����� ��
�� �� ����� ��

���
����� ��
�� ���� ������

���� ����	
	� �����

��

������
���� �� �������	 ��	
����
 �� � ���� ���� � � � � ���� � �

	��
� �

��	�
���

�	 �� � ����
���
� ��

��� �� �
 �

�
� �

���
� �

��� � �
 � �

����
� � ��� � �
 �

��

��� 	 � �
� �

��� ������� ����
���
� ���� �� �
� � ��	� ���
��� � ���� �������� �� ����	
������ ��
�
 � ��
�
 ������ �������� ����

�

��� ������
�� � �
����� ��
����
���
�
��

	� �����

��

��� 	 � �
� �

���� ��
�
 ���� ����� �� ������ �������� �
��

���� ��
�
 ���� ����� �� ������ �������� �
��

��� ������ �
 � ��� ���� � ������
��
��
� � � ��	
��

��

������

�
�� �� �������	 ��	
����
 ��

 �
������ ��� ��������� �������

��� ����
�
�� �
�
�
�� ���
 ��
��
 ������� 	�
 ����� �
 ���� ������
�� �
��

��
���� ���
 ���
���� ����
�
�� �� ������� !�
 ��� ����
��� ��� ���
���� ���
���

�
� ����������
��� ���� � ����� � ���
 � ����
���� " �
� ���� ��
�
�� ��
�

��
 ��
���
� ��� �	 ���� ���
�� ��
���
��
�
�
��� �
�� �
����� ����� ���

	���� �
��� � ��
�����
��
��� ��

 �	
�� ����
�
�� �����
�
�� � ��
����� �����

������#��
�� ����
�
 �
����� $�����#��� �
���� �� ���������

� ������#��� ��

��
���
� �	
�� �

�

�
� ����
����
�
�� 	�������� ���

���
���% ��
� �
�������

��� �
�� � ����
��� �&����� ��� ����� �
 �� ����
���' ��
� �
�������
 ��� �
��

�� ��������� �&����� ��� ����� �
 �� ����
���� ���� ��� �� ���� ��% �������� �

� ��
����� � ���
�&���
�� ������
��
 ��
� ����
��� ��
� (���� ������#���
��

)
�

�
� �	
�� ��� (����� �������� ���
�����
���#�
��� (���� ������#���
��

������
�
��

��� ����� �� ��	
����
���

�	��
 ��
���� ��
���
 � ��� � � � � �� ���� ����
�������� � ���

������ ���
� �&��
�
 ����
��
 ���� � ������� �����	 �������� � ��)��
��� �	 �����
�
������� �����	
 ��� �	� *�

��
 ������ ��� �� �� ��
���
� �	���� ��
��� ����
��

����

�
������� � � ����

�
� *�
 ��� ���
��� ���� � ��
�� �
����� ����� ���

	���� �
� ������ ��
� ����
�� ����

�
��� ����
���� " �
� ����� +
 �� ���
� �
���

7 6 Fabie n Le t o uz e y e t al.

���� ��������� �	
 ���	
���� � �
� ��
� ������ ����
��� ����� �	����������� ��
���	������ 	� �� � 	������ �	�� �� ���� ���� ��������� � ���

����� �� ��� � ��� �� �� ��	
��	�
�
�

��
 �
�� �������� � �

� �
�

��� � �

��� ��������� � �� �
�� ����� � ���� � �
� � �
���� �	� ��� �	����� 	� ������	� �

���	� �
 �
� ����

����� ���	� ��� ��	� �
 ������ �� ��	� � �
� �	� �
�	��

��		�� �� ���	������ 	� � ��
 ��� ��������
 �
� �

�
��� � ���������� ��� ������

	� ��� ��
��� �	����� ��������� �
 � �
��� � �� ��� ���� � �
��� � � �� ���
�������

���
��	
�� ��������
 �
��

����
��������������

��� �� 	����� ��� �	��	���� �����������

��
���

���
� ��������

�

�
� ��������� � !

"	�� �	
 ��� �	����� 	� ������	� �
�� � 	� �
�� � 	� ����� ���
� �	 ���
�	��	���� ������	��

������	� �
����
� �	� � ���
�����
� �	� �#!

$���� ��������	� ��
 ������	� #� �� 	������

��
���

���
�
���
� ��� � ���
����
� ���	

�

�
�
���
� ���� � ���
����
� ��

��	

�%&!

"	�� ���� � �
��� �
��� ��
 � �
��� � �� �
������ �
�����
��� ��

��������	� %&� �� 	������

���
����
� ��� � ���
����
� ���

�

�
����
����
� ���� � ���
����
� ��

��	

�%%!

'��	� ��� ��
��	�� �
� �	� �
�	� �� ��	�� �� �� ���� �	 �
	(� ����

��	� � ���
�����
� �	� � ���
�����
� �	� �
��� �%)!

*�������	� %%� ��
 ������	� %) ���	� �	 �
	(� ��� �	��	���� �����������

�����
���

�

�
� �������
���� �%+!

'� � �	��������� 	� ���� ���� ���������� ��
 ������� 	� ��� ���������� ��	� �
������	��
���� �� ���� ���������� � �

� � �������
���� � �
� ��������

�� � �
���

��	
	��
�	� �� �
� 	�����
��	�
�
�

���
��
 �������� � � ��� �
� �������
���� �
 �	���	���� �� ��� ��� ����

��		�� ��� ���������
����� 	� ����� �
�
	�� ������ ����
��� �
� ��
 ������ %

��
) ����
� ���� ��� 	����� ���	������ �������� �������� � ��
��� �����
 	� ���	������ �� � ����� �� �����
 �� ������� �� ��(� ����	��

�	
 ��,� 	� ���
��� �� ���
������	� 	� ��� ���	
���� ���� ���� ��� �-�
 ��

,�	�� �	 ��� ���
��
� '�������� ���� �� �	���	���� �� ��� ����� ����
��� 	� ��
���
��	
� ���� �� �	���	���� �� �� ���� �� ���	 �	���	���� �� � ��
 �� *� �� ����
�	 (�
��� ���� ��� ���
��� �
� ��
� ������ � �	��
���� �	���	���� �� � ��
 ��

7 7Le arning Fro m Po sit iv e and U nlabe le d Example s

��� ������	
 �� 	��
	�	

	
��� ����
�
 �����

������� �� ��� ��	
� ��
������ ��� �� ����������� ���� � ��
� ��
������
������� �� ���� ��������� �� ��� ���� ������ �� ����� ! ���� ���� ��������������
�� �������� "��� ��� "��
�� �� ��� ���
�� ������� ��� �� ��������� ���� ���
������� �
#$# ��� �
#$# �� ���	������ ����� �� ������� ���� ������ ���"��

���� �� �� �������� "��� � ��"�� ����� �� ��� "��
�� �� ��� ���
�� ������� ��

���� �� ��� �������� %��& ��� ������
 ���� �� ��� ��
������ �� ���	������ �� ���
������� �� ���� ��"�� ������

'�� �� �������� � ������� ����� � "���� ��
� ���������� � �����(�� ��� ����)
���	 ���������	 �� ����� �*���� �� ��
������ � "����& ��� ��	 � �� �& ��� ��	
������������ � �� � & � "��� ����� �&
���� ������ �� �
#$#& �
#$#& ���� �
�������
�� �� ���� � �

�
& �� �� ���� � �& � �� �

�
� ���� � � �� ���� ���	������

�� ���� #��� "� ���� ��� �����"��
 ������+

�����

	
�� ��
�
 �� ��������� ����� ����� �������� ���������	 �� ����

����������

������ ,������� ��� �����"��
 ��
������+

���	� �

� � ������� 	��

������ �������� -
��
�

��� ��� ��
� �������
 ��
������ "��� ��������� 	 � �

�
��� ����� �

�� �� ���	 �� ����� ���� ���� ��
������ �� � �������
 ��
������ ���� �������� ���
�������� ����������� ������� ����
 ����������� . ��� ��(������ �� ��

������
 ��� �������	 ���������	 ��� ����	
� ��������� ������� ����� "����
����	 ��� �������	 ���"���
� ��� ��
��

� �������� 	
�� ���
���
 ���� ���� �������� ���

��������� ��������

��� ����������

�� � �������� ����� ���/'��!& "� ��������� �� ��
������ ������ ,0�1��
23'�
�� �� � �������� ���� ��������� ��
������ ����� �� ,0�1 "��� ��� �����"��
 ��4��)
�����+

 ���	 �����	 ������(������ �������� ��� ����������� #�� ������� ��� �������
�	 - ��� .5 �� �*����� �� ���� �� �� �������� �� ��� ����� �� .�

 ,0�1��
23' ��6�� �� �����+
.� � 7�����8 ��� �� ������� �*������
��

��
�� �������� ����� �� ��� "��
�� �� ��� ���
�� ������� ����5

7 8 Fabi e n Le t o uz e y e t al.

�� � ��� �� 	��
�
�� ���
	��� ����
�� � ��� �� ��������� ���
	��� ����

� ��� �	�
��
�� ��
���
�� ���� �� ����
� ����� �� ���
����
��
�� ��
� ��� ���
��
� ���
���
����� ����� �� ��� �����	�� �� ��
�
� ���������� ���
 ���
�
�� ���
	��� ���
���
�� ��
� 	��	����� ����
�
� ���������� ���
 ����
��
���
!���
��� �� ��������
�� �� ��� ��
�
� ����"#$%&'
� ���
��� ���
 �����
���
���
���� ��
�� �!���
��� (� '�� ���� ����	���
���� ����� �� ��� ��� ��
	��
�
�� ����	���
���� ���������� ���
	��� �����
����)
�� ��� ������� ����
�� ��� ��� ���	� �� �� ���

��� �� ���)�
��� �� ��� ������ �����	� ��	��)�
����
� ��� �����)
�� �!���
���*

������
�����

� � ������
����� �

�����
������ �

���	�

� � ��
�

���
�
���� � �
� ����
� �
� ����
�

������� �� � ���
�
�����
�

��	
��
����
�����

�
�

���������
�
�����

�+��

)���� ��� ����
���
�� �� ��� �
� ������� �� ���� � ��������
� ��� ��� �� �����
	���
��� ����� ��� ��� ����
���� ���� �� ����

�
� ��� ��� �� ���
	���
� ����

���)�
�� � ��� ����� �� ��� ��
� ��� ���� ����) � ������	���
�� �� ���
����� � ��� ��� ����
���� ���� ��

��� ������	
 ��
�����
�� ���� �����
��� ���� ���
�
�� ���

��������� �������� ���

,� ��� ����"#$%&'�)� ���� ����
��� �
���� �����
-���
�� 	�����
� ���)�
��		��� ���� ��� ������ ����� ��� ���� �	��
-�� �� 	��
�
��� �� �����
�� ��.
���
��

� �����
���
� /
���� �� �� �����
��
 ��0�� ��
�	�� � ��� ��� ��
���
	��� �� ��� ������ ����� ��� � ��� ��� �� ��������� ���
	���� �� ����.
�
��
 �	�
�� ��� ��� ��� ����	���
���� ����
��� �)� ���� ���� ��� ����
����	���
���� ���� ��� ���� � ��
�� ��� ����� ������ 	�
 ��� ��
� �� "#$1
�����
�� �����
��

� ������)
�� ��� �����)
��
��
-���
���*

� ��� ���

��� ���	� �� ��	� ��0�� ��� �������
�� ������ 2�+� � � � � 2�3�
� ��� $1.�
0� �����
��

� ����"#$%&')
��
�	��� ��� ������� ���

��� ��

��	�� ��� �����
�� ���� ���� ��� �����
� ��� ���� ����� �� ���	�
� ������ ������
�� �� ���

�

�� ���

��� ����� ��

����)���� ��� ���

���
� ����)
�� ��� ���� ���� ���� ��� ���� �
� ��� ����"#$%&')
��
�	��� ��� ���� ����� �� ���	� ��� ��� ���� ��� ���

����

��! "����
����� #
�� $��
�
�� %
���

, �������� ���	 ���� ��� � � � � ��
� �� ������� ��!����� � � ���� ��� � � � � ���� ��
�� ���
��
�)�
�� ���� ��
� �
���

�� ���� ��� � � � � ��� ��� ���� � � ��� ���
 �� ����
���

��
� ��)��� �� � �� /�� ���
�	�� � � ��� ���� ��� ����� ����

7 9Le arning Fro m Po sit iv e and U nlabe le d Example s

�������

�	
��
 ��� ��� ���

����� ��� ��� ��� 	��
 �����
 ���� ��� ���� ����� ���� � ���� ��� ����
��� � � � �� �

�
� ������� �
������ �� ��	� �
 �

��

���
��������� 	��
 ����� �

��
� ���� ��� ���� ��� ������ ��

�	� ������ �� � �������� ����������
����� �

� �����	�� ����������
��	�� �

� � �
��
�
�

������

�� ����	
���� �
��
����

��
� 	
� ��� ��� ��� ������ �

���� 	� �	�
�
�� ����

��� �
�� ���
�
�	 ��� �����	�	� ��	

	�

�� ������ �� �� � 	
��� � �� �
� �
������ ����� ���������� ����� � �� �� ����
�������� ���������� ���� 	
��� ���

���
��� �� � �������� �� �� ��� �������� ���
�� ��� � �� �� ��� � �� ��� �
� �����
 �
���� �� ������ � � 	���
� 	��� ���
������������ 	 ��� ���� �� �����	��

� � ������ �������� ���� � �� �
���� �����
��
� !�� ��� � � ��
 ���� � 	���
� �� �� �
���� �����
�� �� ��
 ��
� � ���
���"����� #�������� �� �##���� �� �
� �	� ���� �� 	���
�� ��� � ���� �

�� ��� ��� � ���� � ��� �
�� 	� ��� �	� ������������� 	� �� � ��� 	� ��
�

� � 	���
� � ��� �
� ������ �����#� �� �
���� $��#������ �� �
� ��#���
���%
� 	 �� ������ ��� ��� ����� �� 	��� � �	���� � �� � ��	����� &��� �
��
	��� � ��

�� ��
#��� �
��� �������

��

� '(�)*+,-&.$�
�% 	
��
 ��/�� �� ��#�� � ��� �
� �� ������� ���
#��� 0
�� ����� �� ��
#��� �� ����
��� �� 	��� 0 � ��� ��� �� #������� ���
#���
��� � ��� ��� �� ��������� ���
#���

� '(�)*+,-&.$	���% 	
��
 ��/�� �� ��#�� �
� ����� ����� �� 	���� � ���
��� �� #������� ���
#��� ��� � ��� ��� �� ��������� ���
#���

� *+,'(�) 	
��
 ��/�� �� ��#�� � ��� ��� �� #������� ���
#��� ��� � ���
��� �� ��������� ���
#����

1� �
� #����� �
� ����� ����� ��� ������ 	���
�� ��� ��#������ �� #�������

��������	
 �� �� ��� 	��� �� ��)� �
� ��"� �� ��� �� �2��� �� �
� ��"� ��
��� ��� ������ ���
)� �� ���� �� ���#)�� �
� ��"� �� �
� �� ���� ��
�)� !�� � ����� ��"� �� ���� 	� ������� ��� ��
�� �
� ��#���
��� 34*� �
������ � �� ���	�� � ������������ 	 �� �
����� ���� �
�� ��� ��� ��� ���
���	� �����
��� 	� ��� �
� �
��� �������

� ��� ��������� �
� ����� ����
�� �
� ���#��
�#��
���� �� � ����� ���� ��� �� ����� ���
#���� �� �������
�
� ����� ����� ���� �
� ��� ��#���
����� �
� ������� ��� ����� �� !����� 5�
�
� �������� �������

 *+,'(�) #�����
� �� 	��� �� '(�)*+,-&.$	���%
	
��� �
� ����� ����� �� 	��� �� ����� �� �
� ��������

80 Fabie n Le t o uz e y e t al.

���������	
 � ��
 �� ��� ���� �	
������ 	
 ���
	�� �� ���� ���� ��� ������
	���� � ��� ��� ��� �����	���� �� ��� ���� �����	����
� ���
	�� �� ��� 	

���� �� ����� ���� ��� �
 ���� � �� � ��
��� ���!� ���
	�� �� �	
 	
 ����
�� �!� ��� � 	"�� "��#� �� ����� $� �"��� � ��� ����� ����
 �"�� ��� ���
�����	����
 %&'� ��� ��
#��
 ��� 	"�� 	� �	
� (��� !� ��� �����	� �� ��
�	��� ')*+(�! �������
 �
 $��� �
 +(�!')*,-./����0 ���� ��� "��#�
 ��
���� $�	�� ��� ��� ���
� ���� � �� �� ��� ������� $��� 1/�0 	
 ���
� �� � 	

���� ��
	�	"� ��� #��������� �������
 ��� ���$� ����
	�	��� �	
��	�#�	��
�
$�����
 ���� ��� �

��	���� $	�� ����
	� �����
 /� ��� ��
	�	"� �������
 ���
� ��� #��������� �������
02 ��	
 ��	�
 ��	
��

���������	 �� ��� ���� �	
������ $	�� %����	���� � 	
 ���� ���

	����	��
��	
� $	�� � ��	
� ���� ��� 	
 ����	��� ��� ��
#��
 ��� 	"�� 	� �	 #�� 3�
��� �����	� �� ��	��� ')*+(�! �������
 �
 $��� �
 +(�!')*,-./����0
��� "��#�
 ��� ���� ������ ���� ����� 4� ������� ��	
 ������� 	� ���
�����#
	�� �� ��� ������

��� ���
�� $�� ')*+(�! ���
����	��
 �#�������� +(�!')*,-./����0

	
 ���� 	� ���
����� �� 	������ �
�	���� ����� �� ���� �#�	� ��� �������
	

�����	�� ���
� ����#
� 	� ��	�
 � ��$�� ����� ���� �#� �� �	�
�
 	� +(�! 	�������
��#�	
�	�
 /$	�� ��	
 "��#� +(�! $	�� ��5� �	
����� ���	��
0�

��� ���������	
 ��	� ��� �������

4� ���
	��� �$� ����
��
 ���� ��� ��� �����	
 �
��	�	
 �������
 67789:�
�������� ��� ��	
�� ��� ��;��	�� ���

 	
 ���
�� �
 ��
	�	"�� ���
	�� �� �	
 	

���� �� �!� 4� ��� ��� �#���� �� ��
	�	"� ��� #�������� �������
 "���� ��� ����
���� ��� ����� ���� �� +(�!')*,-./�	
0� +(�!')*,-./����0 ��� ')*+(�!�
��� ��
#��
 ��� ��
��� 	� �	
� < ��� 9� ��� ��������� ��� ����
 ���
	�	���� ���
���
� ��� ��
#��
 ��� ����	��� �� ')*+(�!� ��	

���
 ���#��� ����#
� 	� #
�

��

 	�������	��� *#���	
	� ��� ')*+(�! ����	�
 ��� ��
� ��
#��
 ��� ��� ����
��
��	
��)�� ���
�� 	
 ��� �#���� �� �������
� ��� ������
��#�� ���� ���� ���
��
#��
 �� ���
��� ����
�� ��� �	
����	��	� $��� ��� ��
	�	"� ���

 	
 ���
�	���	�� ���

�

� �������	��

%����	������ ��
#��

��$ ���� ��� ��	���	�� #
�� 	� ��� �������
	
 ��
�	� ���
 ��	��� 	
 �	�
�� 	� ��"�� �� ��� � "��#�
 �� ����� ���
���� "��#�
 �� �����
��� �������	��� ��
#��
 �� ��� ���
��� �����
��$ ���� � ��� � /�#� �������	��0
�#���� �� �������
 	
 ��=#	����

,
	� � �	
����� $�	 ��	� 	� ���
�����	�� ��	���	�� ����
 �� � �	�
 	� ��"��
�� �	
����� "��#�
 �� ����� *� $�
����� ��� 	����"�����
 �� �#� �� ��	���
�����$	� ��� ���� 	���
�

� >� � ��$�� ��#�� ��� �� #���� ��#�� ��� ���� ��� 	"�� �� ��� �������� ���
�
�	����
 ��� ���� ��� ���
�� ���$��� ��	
 ��#��
 ��� � ������ ��	���	�� ���
�#� �������
	
 ��
�	� �� ��	��� ��#�� ��
��������

81Le arning Fro m Po sit iv e and U nlabe le d Example s

� ��� �����	
�� ��
�� ��� �� ��
	��
� �� ���� �� �
�����	�� ������	��
	���

��
�	��� �� 	
���
	��� ��
�� ���� �����	
���
�	�� �	
���
�� ��	��
 ����
��
�� �����
�� ����
���	� � ��
��
����
 ��	��
 ��
	��
� ��	�� ���
���
�

����
��
��
 ����
���	��

����������

������ �� ��	
���
�� �� �
���� ��
����	 ���� ����� ��
��
��� ������� ���	���
�
�������� �!"� #$���

�%&'(��� �� %����
��)� *� &�����
�� +� �� '
�,���
�� -�)� (.���� -

���/0
.���

�� ��	������� .����� 1�0,��0

 �����.� 2
��3��., 4�.���
.���

� 5��.�����
-�� #$���

�%62""� �� %
��� �� 6

��
�� *� 2
�����
�� 7����8.�
��
�.
�
����	� .,� �
��.�
���9
���
�� .,� �.
.��.�0

 :���� ����
� 4� �	����
��
� �� ��� ���
 ������
��� ��������� �� ����	� �� ��������
� �"""� 1�
���
��

�%5$�� �� %
��
�� 1� 5�.0,�

� -��9����	

9�
��
�� ��

9�
�� �
.
 3�., 0�8
.�
����	� 4� �	��� ���� ����� ����� �� ������� ���	���
 ����	�� �
	��
$� #""� �-5 ������ 7�3 ;��<� 7;� #$$��

���=�$$� &� ��-���.>� &� ������ +� =�

�����
�� &� ��.��?��� ����.�@�
�� ��

8
9�
�� ��
��
�� ,�
�
�
����	� 4� ��� ��� � �� !���	�������� �����	���� ��
��
�	������ ���	���
 ����	�� @�
��� #!�" �� �"�!� �
	�� �#$ ��"� #$$$�

���0$!� (� A� ��0
.��� �
0
�
����	 3�., 0���.
�.8�
�.�.��� 0

���/0
.��� �����
��

��
�0
.���� .� ��0����� .��� ����0.���� 4� �	����
��
� �� ��� #��	������
!���	�������� �����	���� �� ������� ���	���
� #$$!�

����$�� &� ������ ��-
�
����	 ���� ����.�@� �.
.��.�0

 :������� 4� 5�0,
�
 5�
+�0,.��� -
�
 *� (��.,� +�
� 2��,
	���
�� 1,��
� B��	�
��� ���.����
�	����
��
� �� ��� ��� !���	�������� �����	���� �� ��
�	������ ���	���

����	� $���%�&'� @�
��� #C"# �� �"�!� �
	�� ##� #�D� %��
��� '0.�9�� �
#" #$$�� (����	���

�*6�2$#� �� *
���
��� 5� 6�
���� 7� ��..
��.����
�� 5� 6� 2
���.,� A:��@

��0�
�� ����
� ��� ��
�����

�
��
9�
�.�� !���	�� �������� $C����#�$ #D#� ��8
0��9�� #$$#�

�)
0""�)�)
0<���� '� .,� �E0���0� �� �����8.�
��
�. �
0

	���.,�� ����@�� ����
�.
.��.�0

 :������� 4� �	����
��
� �� ��� ���� ������ �����	���� �� ���%
���������� ���	���
 ����	�� �"""� 1�
���
��

�6�
$�� 5� 6�
���� AE0���. �����8.�
��
�.
�
����	 ���� �.
.��.�0

 :������� 4�
�	����
��
� �� ��� �(�� ��� ��������� �� ��� ����	� �� ��������
� �
	��
�$� �"#� �-5 ������ 7�3 ;��<� 7;� #$$��

�6F$�� 5�)� 6�
���
�� G� F� F
?��
��� �� !��	�
������ �� ������������� ���	�%
��
 ����	�� 541 ������ #$$��

�5�.$$� 1�� 5�.0,�

� 1,� ��
� �� ��

9�
�� �
.
 �� �����@����
�
����	� 4� �	�%
���
��
� �� ��� ��)�� !���	�������� �����*���� �� ��
����+� �������� #$$$�

�55$�� -�)� 5��?
�� ��5� 5���,�� G-4 ������.��� �� �
0,���
�
����	 �
.
9
����
#$$��

�H��$��)� +� H���

�� �,�(- �	�
	��� ��	 ������� ���	���
� 5��	
� 6
���
���
(
� 5
.��� -�� #$$��

�F

��� ��=� F

�
�.� � .,���� �� .,�
�
��
9
�� ������� ���� �!�##��##�� ##���
7�@��9�� #$���

82 Fabie n Le t o uz e y e t al.

� ��������	
�� ��
��

0

2

4

6

8

10

12

0 200 400 600 800 1000

er
ro

r
ra

te

size(POS)=size(UNL)

C4.5POSUNL(LAB)
C4.5POSUNL(D(f))

POSC4.5

���� �� ��������� � ��� ������	
� � ��������� ������ ��	
 ��
	 ���� �� �
�� ���

��� � ���

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

er
ro

r
ra

te

D(f)

C4.5POSUNL(LAB)
C4.5POSUNL(D(f))

POSC4.5

���� �� ��������� � ��� ������	
� � ��������� � �����
��� ������ ��	
 �
	 �

�� �
�� ����

83Le arning Fro m Po sit iv e and U nlabe le d Example s

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

er
ro

r
ra

te

D(f)

C4.5POSUNL(LAB)
C4.5POSUNL(D(f))

POSC4.5

���� �� ��������� � ��� ������	
� � ���� ��������� � �����
��� ������ ��	
 �

�	
 �� ���� ����

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

er
ro

r
ra

te

D(f)

C4.5POSUNL(LAB)
C4.5POSUNL(D(f))

POSC4.5

���� �� ��������� � ��� ������	
� � ��������� � �����
��� ������ ��	
 � �	

�� ���� ����� � �	��� ���� 	� ��� �� �������

84 Fabi e n Le t o uz e y e t al.

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700

er
ro

r
ra

te

size(POS)=size(UNL)

C4.5POSUNL(LAB)
C4.5POSUNL(D(f))

POSC4.5

���� �� �������� ���� ���� ��������� � ��� ������	
� � ��������� ���	��
���
�

�� ��� �� ����
��
��� � ���

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000

er
ro

r
ra

te

size(POS)=size(UNL)

C4.5POSUNL(LAB)
C4.5POSUNL(D(f))

POSC4.5
majority rule

C4.5 with 35000 labeled examples

���� �� ��	
� ���� ���� ��������� � ��� ������	
� � ��������� ���	��
���
�� ��

����� �� ����
���
��� � ����

85Le arning Fro m Po sit iv e and U nlabe le d Example s

Learning Erasing Pattern Languages with Queries

Jochen Nessel1 and Steffen Lange2

1 Universität Kaiserslautern, Fachbereich Informatik
Postfach 3049, 67653 Kaiserslautern, Germany

nessel@informatik.uni-kl.de
2 Universität Leipzig, Institut für Informatik
Augustusplatz 10–11, 04109 Leipzig, Germany

slange@informatik.uni-leipzig.de

Abstract. A pattern is a finite string of constant and variable symbols.
The non-erasing language generated by a pattern is the set of all strings
of constant symbols that can be obtained by substituting non-empty
strings for variables. In order to build the erasing language generated by
a pattern, it is also admissible to substitute the empty string.
The present paper deals with the problem of learning erasing pattern lan-
guages within Angluin’s model of learning with queries. Moreover, the
learnability of erasing pattern languages with queries is studied when ad-
ditional information is available. The results obtained are compared with
previously known results concerning the case that non-erasing pattern
languages have to be learned.

1 Introduction

A pattern is a finite string of constant and variable symbols (cf. Angluin [1]). The
non-erasing language generated by a pattern is the set of all strings of constant
symbols that can be obtained by substituting non-empty strings for variables. In
order to build the erasing language generated by a pattern, it is also admissible
to substitute the empty string.

Patterns and the languages defined by them have found a lot of attention
within the last two decades. In the formal language theory community, formal
properties of both erasing and non-erasing pattern languages have carefully been
analyzed (cf., e.g., Salomaa [15,16], Jiang et al. [7]). In contrast, in the learning
theory community, mainly the learnability of non-erasing pattern languages has
been studied (cf., e.g., Angluin [1], Marron and Ko [10], Angluin [3], Kearns
and Pitt [8], Lange and Wiehagen [9]). The learning scenarios studied include
Gold’s [5] model of learning in the limit, Valiant’s [20] model of probably approx-
imately correct learning, and Angluin’s [3] model of learning with queries. More-
over, interesting applications of pattern inference algorithms have been outlined.
For example, learning algorithms for non-erasing pattern languages have been
applied in an intelligent text processing system (cf. Nix [14]) and have been used
to solve problems in molecular biology (cf., e.g., Shinohara and Arikawa [18]).

However, there is not so much known concerning the learnability of erasing
pattern languages (cf. Shinohara [17], Mitchell [13]). A lot of interesting and

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 86–100, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Learning Erasing Pattern Languages with Queries 87

quite easy to formulate problems are still open. The most challenging problem is
the question of whether or not the class of all erasing pattern languages is Gold-
style learnable from only positive data. In contrast, the affirmative answer to
the analogue question for non-erasing pattern languages has already been given
in the pioneering paper Angluin [1]. Thus, one may expect that things become
generally more complicated when dealing with erasing pattern languages.

In the present paper, we study the learnability of erasing pattern languages
in Angluin’s [3] model of learning with queries. In contrast to Gold’s [5] model of
learning in the limit, Angluin’s [3] model deals with ‘one-shot’ learning. Here, a
learning algorithm (henceforth called query learner) receives information about a
target language by asking queries which will truthfully be answered by an oracle.
After asking at most finitely many queries, the learner is required to make up
its mind and to output its one and only hypothesis. If this hypothesis correctly
describes the target language, learning took place.

Furthermore, we address the problem of learning erasing pattern languages
with additional information using queries, a refinement of Angluin’s [3] model
which has its origins in Marron [11]. In this setting, the query learner initially
receives a string that belongs to the target language before starting the pro-
cess of asking queries. As it turns out, this extra information may allow for a
considerable speeding up of learning.

Although, there is a rich reservoir on results concerning the problem of learn-
ing non-erasing pattern languages with queries (cf. e.g., Angluin [3], Lange and
Wiehagen [9], Erlebach et al. [4], Matsumoto and Shinohara [12]), to our knowl-
edge, there is only one paper that addresses the erasing case. In Erlebach et
al. [4], the authors pointed out that erasing one-variable pattern languages can
be learned using polynomially many supersets queries. In the present paper, we
mainly deal with the problem to which extent, if at all, the known results for the
non-erasing case have their analogue when erasing pattern languages have to be
learned. We hope that this and similar studies help to widen our understanding
of the peculiarities of learning erasing pattern languages, in general, which, in
the long term, may produce insights being of relevance to successfully attack
the longstanding problem of whether or not positive examples suffice to learn
erasing pattern languages in Gold’s [5] model.

In former studies (cf., e.g., Angluin [3], Marron [11]), mainly the following
types of queries have been considered:

Membership queries. The input is a string w and the answer is ‘yes’ and ‘no’,
respectively, depending on whether w belongs to the target language L.

Equivalence queries. The input is a language L′. If L = L′, the answer is ‘yes’.
Otherwise, together with the answer ‘no’ a counterexample from the sym-
metrical difference of L and L′ is supplied.

Subset queries. The input is a language L′. If L′ ⊆ L, the answer is ‘yes’. Other-
wise, together with the answer ‘no’ a counterexample from L′ \L is supplied.

Superset queries. The input is a language L′. If L ⊆ L′, the answer is ‘yes’.
Otherwise, together with the answer ‘no’ a counterexample from L \ L′ is
supplied.

88 Jochen Nessel and Steffen Lange

For equivalence, subset, and superset queries, also a restricted form has been
studied. In the corresponding case, the answer “no” is no longer supplemented
by a counterexample.

The following table summarizes the results obtained and compares them to
the corresponding results concerning the learnability of non-erasing pattern lan-
guages with queries. The types of queries are identified according to the follow-
ing scheme: (1) membership queries, (2) equivalence queries, (3) subset queries,
and (4) restricted superset queries. (5) indicates the fact that additional infor-
mation is available. The items in the table have to be interpreted as follows. The
item ‘No’ indicates that queries of the specified type are insufficient to exactly
learn the corresponding language class. The item ‘Yes’ indicates that the corre-
sponding class is learnable using queries of this type. Furthermore, if the add-on
‘Poly’ appears, it is known that polynomially many queries will do, while, oth-
erwise, it has been shown that polynomially many queries do not suffice. The
table items that are superscripted with a † refer to results from Angluin [3],
while those superscripted with a ‡ refer to recent results from Matsumoto and
Shinohara [12].

Type of Arbitrary patterns Regular patterns
queries non-erasing erasing non-erasing erasing

(1) Yes† No Yes† Yes
(4) Yes+Poly† No Yes+Poly† Yes+Poly

(1) + (5) Yes† No Yes+Poly‡ Yes+poly
(1) + (2) + (3) Yes† Yes Yes† Yes

(1) + (2) + (3) + (5) Yes Yes Yes+Poly‡ Yes+Poly

2 Preliminaries

2.1 Patterns and their languages

In the following, knowledge of standard mathematical and recursion theoretic
notations and concepts is assumed (cf., e.g., Rogers [19]). Furthermore we as-
sume familiarity with basic language theoretic concepts (cf., e.g., Hopcroft and
Ullman [6]). Patterns and pattern languages have been formally introduced in
Angluin [1].

We assume a finite alphabet Σ such that |Σ| ≥ 2 and a countable, infinite
set of variables X = {x, y, z, x1, y1, z1, . . .}. The elements from Σ are called
constants. A word is any string – possibly empty – formed by elements from Σ.
The empty string is denoted by ε.

A pattern is any non-empty string over Σ ∪ X . The set of all patterns is
denoted by π. Of course π depends on Σ, but it will always be clear from the
context, which alphabet is being used. Let α, β and the like range over pattern.
Two patterns α and β are equal, written α = β, if they are the same up to
renaming of variables. For instance, xy = yz, whereas xyx �= xyy.

Moreover, let α be a pattern that contains k distinctive variables. Then α is
in normal form, if the variables occurring in α are precisely x1, . . . , xk and for

Learning Erasing Pattern Languages with Queries 89

every j with 1 ≤ j < k, the leftmost occurrence of xj in α is left to the leftmost
occurrence of xj+1.

A pattern α is homeomorphically embedded in pattern β, if α can be ob-
tained by deleting symbols from β. Obviously, it is decidable whether or not α
is homeomorphically embedded in β.

By vars(α) we denote the set of variables appearing in pattern α. Let |α|
stand for the number of symbols in α. By |α|x we denote how many times the
symbol x appears in α.

Let α be a pattern and let |α| = m. Then, for all j ∈ IN with 1 ≤ j ≤ m,
α[j] denotes the symbol at position j in pattern α. Moreover, for all j, z ∈ IN
with 1 ≤ j ≤ z ≤ m, we let α[j : z] denote the subpattern of α which starts at
position j and ends at position z, i.e., α[j : z] = α[j] · · ·α[z].

If, for all x ∈ vars(α), |α|x = 1, the pattern α is said to be a regular pattern
(i.e., every variable in α appears at most once). The set of all regular patterns
is denoted by πr. If vars(α) = {x} for some x ∈ X , then α is said to be a
one-variable pattern.

A substitution is a mapping from X to Σ∗. For a pattern α, ασ is the word
that results from replacing all variables in α by their image under σ. For x ∈ X ,
w ∈ Σ∗ and α ∈ π, let α[x ← w] denote the result of replacing x by w in α.

For a pattern α, let seqterm(α) be the sequence of all non-variable parts of α.
For example, seqterm(xabybbzba) = (ab, bb, ba).

For a pattern α, the erasing pattern language Lε(α) generated by α is the set
of all strings in Σ∗ that one obtains by substituting strings from Σ∗ for variables
in α. We let αε denote the word that one obtains if one substitutes the empty
string for all variables in α. Obviously, αε is the one and only shortest string in
the language Lε(α).

A pattern is called proper, if it contains at least one variable. It is easy to see
that Lε(α) is infinite if and only if α is proper. Therefore, the main objective of
our studies are proper patterns.

For α, β ∈ π, by Lε(α)Lε(β) we denote the set of all words uv with u ∈ Lε(α)
and v ∈ Lε(β). This notation extends to more than two patterns in the obvious
way.

For a pattern α, the non-erasing pattern language L(α) generated by α is
the set of all strings in Σ+ that one obtains by substituting strings from Σ+ for
variables in α. The only difference between erasing and non-erasing languages
is the additional option to substitute variables by the empty string. But this
seemingly small detail makes a big difference. In the erasing case, things become
generally much harder (cf., e.g., Salomaa [15,16], Jiang et al. [7]).

Finally, two patterns α and β are said to be equivalent, written α ≡ β,
provided that Lε(α) = Lε(β).

2.2 Models of learning with queries

The learning model studied in the following is called learning with queries. An-
gluin [3] is the first comprehensive study of this learning model. In this model,
the learner has access to an oracle that truthfully answers queries of a specified

90 Jochen Nessel and Steffen Lange

kind. A query learner M is an algorithmic device that, depending on the reply
on the queries previously made, either computes a new query or a hypothesis and
halts. M learns a target language L using a certain type of queries provided that
it eventually halts and that its one and only hypothesis correctly describes L.
Furthermore, M learns a target language class C using a certain type of queries,
if it learns every L ∈ C using queries of the specified type. As a rule, when learn-
ing a target class C, M is not allowed to query languages not belonging to C
(cf. Angluin [3]).

Moreover, we study learning with additional information using queries. In
this setting, a query learner M receives, before starting to ask queries, one string
that belongs to the target language. Then, similarly as above, M learns a target
language L with additional information using a certain type of queries provided
that, no matter which string w ∈ L is initially presented, it eventually halts and
the hypothesis which it outputs correctly describes L. Furthermore, M learns
a target language class C with additional information using a certain type of
queries, if it learns every L ∈ C with additional information using queries of the
specified type. As above, M is not allowed to query languages not belonging to
the target class.

The complexity of a query learner is measured by the total number of queries
to be asked in the worst-case. The relevant parameters are the length of the
minimal description for the target language and, in case learning with addi-
tional information is studied, the length of the minimal description for the target
language and the length of the initial example presented.

Since we deal with the learnability of (non-)erasing pattern languages, it
seems to be appropriate to require that a query learner M uses just patterns to
formulate its queries. It will become clear from the context whether a query α
refers to the non-erasing language L(α) or the erasing language Lε(α). Moreover,
we generally assume that a query learner outputs patterns as hypotheses.

The following lemmata provide a firm basis to derive lower bounds on the
number of queries needed.
Lemma 1. (Angluin [3]) Assume that the target language class C contains at
least n different elements L1, . . . , Ln, and there exists a language L∩ /∈ C such
that, for any pair of distinct indices i, j, Li ∩ Lj = L∩. Then any query learner
that learns each of the languages Li using equivalence, membership, and subset
queries must make n− 1 queries in the worst case.

Lemma 1 can easily be modified to handle the case that learning with addi-
tional information using queries is considered.
Lemma 2. Assume that the target language class C contains at least n different
elements L1, . . . , Ln, and there exists a non-empty language L∩ /∈ C such that,
for any pair of distinct indices i, j, Li ∩ Lj = L∩. Then any query learner that
learns each of the languages Li with additional information using equivalence,
membership, and subset queries must make n− 1 queries in the worst case.
Proof. The initial example is simply taken from the non-empty language L∩.
This example gives no real information, since it belongs to all languages Li. The
rest of the proof can literally be done as in Angluin [3]. X

Learning Erasing Pattern Languages with Queries 91

3 Results

3.1 Learning of erasing pattern languages

Proposition 1 summarizes some first results that can easily be achieved.
Proposition 1.

(a) The class of all erasing pattern languages is not learnable using membership
queries.

(b) The class of all erasing pattern languages is learnable using restricted equiv-
alence queries.

(c) The class of all erasing pattern languages is not polynomially learnable using
membership, equivalence, and subset queries.

Proof. Assertion (b) is rather trivial, since the class of all erasing pattern
languages constitutes an indexable class of recursive languages.

Assertion (c) follows directly from Lemma 1. To see this note that, for all
n ∈ IN, there are |Σ|n many distinctive patterns of form xw, where w ∈ Σ+

with |w| = n. Moreover, since, for all w, w′ ∈ Σ+, |w| = |w′| and w �= w′ imply
Lε(xw) ∩ Lε(xw′) = ∅, we are immediately done.

It remains to verify Assertion (a). So, let α = ayy. Moreover, for all i ∈ IN,
let αi = ax2i+1yy. Assume to the contrary that there is a query learner M
that learns all erasing pattern languages using membership queries. Let W =
{w1, . . . , wn} be the set of strings that M queries when learning α. Let m =
max ({|wi| | wi ∈ W}). It is easy to see that, for all w ∈ Σ∗ with |w| ≤ m,
w ∈ Lε(α) iff w ∈ Lε(αm). However, Lε(αm) �= Lε(α), and thus M cannot learn
α and αm, a contradiction. X

As our next result shows, Assertion (c) remains valid if additional information
is available. Note that, in contrast to all other results presented above and below,
Theorem 1 comprises the non-erasing case, too.

Let n ∈ IN, let πn be the class of all patterns having length n, and let
Lε(πn) = {Lε(α) | α ∈ πn} as well as L(πn) = {L(α) | α ∈ πn}.
Theorem 1. The class of all erasing pattern languages in Lε(πn) and of all non-
erasing pattern languages in L(πn), respectively, is not polynomially learnable
with additional information using membership, equivalence, and subset queries,
even in case that n is a priori known.
Proof. Due to the limitations of space, we only handle the erasing case. For
the sake of simplicity, assume that n is even. So, let n = 2m and let πm

x ⊆ πn

be the set of all patterns α that fulfill Conditions (1) to (3), where

(1) α = xX1aX2a · · ·Xma, where x ∈ X , X1 ∈ {x}∗, . . . , and Xm ∈ {x}∗.
(2) |α|a = m.
(3) |α|x = m.

The main ingredient of the proof is the following claim.
Claim. For all α, β ∈ πm

x , if α �= β, then Lε(α) ∩ Lε(β) = {atm | t ≥ 1}.
Let α and β be given. Clearly, {atm | t ≥ 1} ⊆ Lε(α)∩Lε(β) follows directly

from Conditions (2) and (3). Therefore, it remains to verify that Lε(α)∩Lε(β) ⊆

92 Jochen Nessel and Steffen Lange

{atm | t ≥ 1}. So, let w ∈ Lε(α) and let w /∈ {atm | t ≥ 1}. By Conditions (2)
and (3), there has to be some σ with xσ �∈ {a}∗ such that ασ = w. Suppose to
the contrary that w ∈ Lε(β). Hence there is some σ′ with xσ′ �∈ {a}∗ such that
w = βσ′.

By Conditions (2) and (3), we know that |xσ′| = |xσ|. Moreover, since α
and β both start with x, we may conclude that xσ′ = xσ. Now, choose the least
index i such that Xi �= Yi. Note that i exists, since α �= β. Moreover, note that
i �= n, since |α| = |β| and i was chosen to be the least index with Xi �= Yi. By
the choice of i, we obtain (xX1aX2 · · ·Xi−1a)σ = (xY1aY2 · · ·Yi−1a)σ′.

Finally, pick the first position r in xσ that is different from a. Note that such
a position exists, since xσ �∈ {a}∗. Let b be the rth letter in xσ. Without loss of
generality we assume that |Xi| < |Yi|. (Otherwise α is replaced by β and vice
versa.) Let |Xi| = k and |Yi| = 	. Hence (Xia)σ = (xσ)ka and Yiσ = (xσ)� =
(xσ)kxσ(xσ)�−k−1. Since i �= n, Xi cannot form the end of α. But then ασ and
βσ must differ at position z + k|xσ|+ r, where z = |xX1aX2 · · ·Xi−1aσ|. Hence
ασ �= βσ′, a contradiction. This completes the proof of the claim.

By the latter claim, we may conclude that, for all α, β ∈ πm
x , α �= β implies

Lε(α) �= Lε(β). To see this, note that, for all α ∈ πm
x , Lε(α) \ {a}+ �= ∅.

Moreover, one easily verifies that {atm | t ≥ 1} /∈ πm
x .

In order to apply Lemma 2, we have to estimate the number of patterns
that belong to πm

x . For m ≥ 1, there are
(
2m−2
m−1

)
possibilities to distribute the

remaining m− 1 occurrences of x over the (possibly empty) strings X1 to Xm.
An easy and very rough calculation shows that, for all m ≥ 4,

(
2m−2
m−1

)
≥ 2m.

Hence, by Lemma 2, we may conclude that that any query learner that
identifies πm

x with additional information must make at least 2m−1 membership,
equivalence or subset queries. Finally, since, by assumption, m = 2n, and πm

x ⊆
πn, we are done. X

By Lemma 2, Theorem 1 allows for the following corollary.
Corollary 2. The class of all erasing pattern languages is not polynomially
learnable with additional information using membership, equivalence, and subset
queries.

In contrast to the non-erasing case (cf. Angluin [3]), restricted superset
queries do not suffice the learn all erasing pattern languages. Recall that, for non-
erasing pattern languages, even polynomially many restricted superset queries
are enough. Surprisingly, the announced non-learnability result for erasing pat-
tern languages remains valid, if additional information is provided.
Theorem 3. The class of all erasing one-variable pattern languages is not learn-
able with additional information using restricted superset queries.
Proof. For all j ≥ 1, we let αj = xja. Now, assume to the contrary that there
exists a query learner M that finitely learns all one-variable pattern languages
with additional information using restricted superset queries. Moreover, assume
that M is allowed to use arbitrary erasing pattern languages as input to its
restricted superset queries.

Learning Erasing Pattern Languages with Queries 93

First, provide the string w′ = a to the learner. Note that w′ belongs to all
erasing pattern languages Lε(αj). The queries of the learner will be answered as
follows:

Let β be the pattern queried by M . Depending on the minimal string βε in
Lε(β), we distinguish the following cases:

Case 1. βε = a.
Now, there are β′, β′′ ∈ X ∗ such that β = β′aβ′′. If vars(β′) \ vars(β′′) �= ∅,

the reply is ‘yes’; otherwise the reply is ‘no’.
Case 2. βε = ε.
If there is some x ∈ vars(β) with |β|x = 1, then the reply is ‘yes’. Otherwise,

the reply is ‘no’.
Case 3. Otherwise.
Then, the reply is ‘no’.
Let π be the pattern which M outputs as its final hypothesis.
We claim that there is a pattern αi such that (i) Lε(αi) �= Lε(π) and (ii)

the reply to all the queries posed by M is correct, and therefore M must fail to
learn Lε(αi).

The formal verification is as follows.
First, let β be a pattern for which the reply received was ‘no’. Now, it is not

hard to see that, for all αj , this reply is correct, i.e., Lε(αj) �⊆ Lε(β). (* In each
case, either a or bja witnesses Lε(αj) \ Lε(βiz) �= ∅. *)

Second, let β be a pattern for which, in accordance with Case 2, the reply
received was ‘yes’. Clearly, Lε(β) = Lε(x), and thus, for all αj , Lε(αj) ⊆ Lε(β).

Third, let βk1 , . . . , βkm be the patterns for which, in accordance with Case 1,
the reply received was ‘yes’. Hence, there are patterns β′

k1
, . . . , β′

km
∈ X+ and

β′′
k1

, . . . , β′′
km

∈ X ∗ such that, for all z ≤ m, βjz = β′
jz

aβ′′
jz

. For every z ≤ m,
let xz be the variable in vars(β′

jz
) \ vars(β′′

jz
) for which |β′

jz
|xz is maximal.

Finally, set j = (|π| + 1) · ∏z≤m |β′
jz
|xz . Obviously, Lε(αj) �= Lε(π), since

Lε(π) contains a string having the same length as π, while Lε(αj) does not.
It remains to show that, for all z ≤ m, Lε(αj) ⊆ Lε(βkz). So, let w ∈ Lε(αj)
and let z ≤ m. Hence, there is some v ∈ Σ∗ such that vja = w. By the choice
of j, there is some r ∈ IN such that r = j

|β′
jz

|xz
. Now, select the substitution σ

that assigns the string vr to the variable xz and the empty string ε to all other
variables. Since |β′

jz
|xz · r = j, we get βjz σ = w, and thus w ∈ Lε(βkz). This

completes the proof of the theorem. X

Having a closer look at the demonstration of Theorem 3, we may immediately
conclude:
Corollary 4. The class of all erasing pattern languages is not learnable with
additional information using restricted superset queries.

3.2 Learning regular erasing pattern languages

As we have seen, in the general case, it is much more complicated to learn erasing
pattern languages instead of non-erasing ones. Surprisingly, the observed differ-

94 Jochen Nessel and Steffen Lange

ences vanish when regular erasing and regular non-erasing pattern languages
constitute the subject of learning.
Proposition 2. The class of all regular erasing pattern languages is not poly-
nomially learnable using equivalence, membership and subset queries.
Proof. The proposition follows via Lemma 1. To see this, note that all pattern
languages used in the demonstration of Proposition 1, Assertion (c) constitute
regular erasing pattern languages. X

As we will see, even polynomially many membership queries suffice to learn
regular erasing pattern languages, if additional information is available. Hence,
the corresponding result from Matsumoto and Shinohara [12] for regular non-
erasing pattern languages translates in our setting of learning regular erasing
pattern languages.

In order to prove Theorem 5, we define a procedure called sshrink (see Fig-
ure 1 below) that can be used to determine the shortest string in a target regular
erasing pattern language Lε(α). The input to the procedure sshrink is any string
from Lε(α). Moreover, sshrink requires access to a membership oracle for the tar-
get language Lε(α). Note that sshrink is a modification of the procedure shrink
in Matsumoto and Shinohara [12]. Moreover, sshrink is an abbreviation for the
term ‘solid shrink’.

In the formal definition of sshrink we make use of the following notation. Let
w ∈ Σ+ with |w| = m. For all j ∈ IN with 1 ≤ j ≤ m, w[j ←↩ ε] is the string
which one obtains, if one erases w[j], i.e., the constant at position j in w.

On input w ∈ Lε(α), execute Instruction (A):

(A) Fix m = |w| and goto (B).
(B) For j = 1, . . . , m, ask the membership query w[j ←↩ ε]. If the

answer is always ‘no’, then output w. Otherwise, determine
the least j, say ĵ, for which the answer is ‘yes’ and goto (C).

(C) Set w = w[ĵ ←↩ ε] and goto (A).

Figure 1: Procedure sshrink

The following lemma is quite helpful when verifying the correctness of the
procedure sshrink (cf. Lemma 4 below).
Lemma 3. Let α ∈ πr and w ∈ Lε(α). Then w = αε iff v �∈ Lε(α) for all
proper subwords of w.
Proof. Necessity: Obviously, since αε is the shortest string in Lε(α).

Sufficiency: Now, let w ∈ Lε(α). Hence, there is a substitution σ such that
ασ = w. Suppose that there is a variable x in α such that σ(x) �= ε. Now, modify
σ to σ′ by assigning the empty string ε to x. Since α is a regular pattern, we
know that ασ′ forms a subword of w. By definition, ασ′ ∈ Lε(α). Therefore, if
no proper subword of w belongs to Lε(α), w must equal αε. X

Learning Erasing Pattern Languages with Queries 95

Lemma 4. Let α ∈ πr and w ∈ Lε(α). On input w, sshrink outputs the
string αε. Moreover, sshrink asks O(|w|2) membership queries.
Proof. The lemma follows immediately from Lemma 3 and the definition of
the procedure sshrink (cf. Figure 1). X

Theorem 5. The class of all regular erasing pattern languages is polynomially
learnable with additional information using membership queries.
Proof. The proof is relatively easy for the case that |Σ| ≥ 3. It becomes pretty
hard if the underlying alphabet exactly contains two constant symbols, even
though the underlying idea is the same. The main reason is, that the following
fundamental lemma holds only in case that |Σ| ≥ 3.
Lemma 5. (Jiang et al. [7]) Let α, β ∈ π and |Σ| ≥ 3. If Lε(α) = Lε(β), then
seqterm(α) = seqterm(β).

To see the point, assume for a moment that Σ = {a, b}. As some quick
calculation shows, Lε(xabyaz) = Lε(xaybaz), but obviously seqterm(xabyaz) �=
seqterm(xaybaz).

To proof the theorem, we start with the case of |Σ| ≥ 3. Let α ∈ πr and
w ∈ Lε(α) be given. Remember that sshrink uses O(|w|2) membership queries
for a given w. Let αε = a1 · · · an be the word returned by sshrink. For all i
with 1 ≤ i ≤ n − 1, there is a constant c ∈ Σ such that c �= ai and c �= ai+1.
Now, Lemma 5 and the regularity of α imply a1 · · ·aicai+1 · · · an ∈ Lε(α) iff,
in pattern α, there is a variable between ai and ai+1. Hence, n + 1 additional
membership queries suffices to find the positions at which variables appear in
α, and therefore we can easily construct a pattern that defines the same erasing
language as α.

Next, let |Σ| = 2. Now, the main obstacle is that there is no longer a “third
letter”, and therefore, as the above example shows, Lemma 5 remains no longer
valid. However, we have been able to derive a couple of lemmata that allows us
to show that there is kind of “normal form” to represent regular erasing pattern
languages. Applying this insight, the theorem can be shown. The interested
reader is referred to the appendix, where a short sketch of the proof can be
found. X

In case that there is no additional information available, membership queries
suffice to learn the class of all regular erasing pattern languages, contrasting the
general case (cf. Proposition 1, Assertion (a)). However, Proposition 2 directly
implies that membership queries cannot be used to find one element from the
target regular erasing pattern languages sufficiently fast.
Corollary 6. The class of all regular erasing pattern languages is learnable
using membership queries.

Again, in contrast to the general case (cf. Proposition 1, Assertion (c)), re-
stricted superset queries suffice to learn regular erasing pattern languages fast.

One main ingredient of the proof of Theorem 7 is the following lemma which
shows that polynomially many restricted superset queries can be used to find
the shortest string in an unknown regular erasing pattern language.

96 Jochen Nessel and Steffen Lange

Note that, in general, superset queries are undecidable for erasing pattern
languages (cf. Jiang et al. [7]). However, since every regular erasing pattern
language constitutes a regular language, the query learners used in the demon-
stration of Lemma 6 and Theorem 7 exclusively ask decidable restricted super-
set queries. Note that, for regular languages, the superset relation is decidable
(cf., e.g, Hopcroft and Ullman [6]).
Lemma 6. Let |Σ| ≥ 2. For all α ∈ π, it is possible to find αε with polynomially
many restricted superset queries.
Proof. We briefly sketch the underlying idea, only. So, let α be the unknown
pattern.

For all constants a ∈ Σ and all n = 1, 2, . . ., one asks restricted superset
queries of the form x1ax2a · · ·axn+1, until the reply is ‘no’ for the first time. As
a result, the first ‘yes’ allows one to determine how often the constant a appears
in αε, i.e., the constant a occurs exactly n times.

Once the multiplicity of each constant is known, one simply selects the con-
stant with the largest one. Now, let a have multiplicity n. Moreover, let b1, . . . , bk

be the list of (possibly equivalent) constants different from a that must oc-
curs in α. Now, one asks restricted superset queries for x1b1x2ax3 · · ·xnaxn+1,
x1ax2b1x3 · · ·xnaxn+1, and so on, until ‘yes’ is returned for the first time. This
gives the leftmost occurrence of b1 with respect to the a’s. By iterating this
procedure for b2 to bk, all respective positions of the constants in α can be de-
termined. Clearly, at the very end, this gives αε. It is not hard to see that at
most O(|α|2) restricted superset queries are sufficient to determine αε. X

Theorem 7. The class of all regular erasing pattern languages is polynomially
learnable using restricted superset queries.
Proof. First, consider the case of |Σ| ≥ 3. Let α be the unknown pattern and
let αε = a1 · · ·an. Without loss of generality we may assume that α does not
contain variables at consecutive positions.

Initially, query a1x1. If the answer is yes, set β = a1; else set β = x1a1. Set
j = 2 and execute Instruction (A).

(A) For all i = j, . . . , n, query βaj · · ·aixj until the answer is ‘no’. If the answer
is always ‘yes’, goto (B). Otherwise, goto (C).

(B) Query βaj · · · an. If the answer is ‘yes’, output β = βaj · · ·an. Otherwise set
β = βaj · · · anxj .

(C) Let k be the least index such that reply is ‘no’. Set β = βaj · · · ak−1xjak

and j = k + 1 and goto (A).

Obviously, the whole process requires |αε| + 2 queries. Moreover, one easily
verifies that βε = αε. As above, note that all queries asked are indeed uniformly
recursive, since they only require to compute the homeomorphic embedding re-
lation.

It remains to show that Lε(β) = Lε(α).
In the remainder of this proof, we assume that α and β are in normal form.

Hence, either the patterns are variable-free or there are r, r′ ∈ IN such that

Learning Erasing Pattern Languages with Queries 97

vars(α) = {x1, . . . , xr} and vars(β) = {x1, . . . , xr′}. We claim that β = α.
Suppose the contrary and let p be the least position with β[p] �= α[p].

Case 1. p = 1.
Obviously, if β[1] = x1, then Lε(a1x) �⊇ Lε(α), and therefore α[1] = x1,

a contradiction. Otherwise, let β[1] = a1. But then, by construction, α[1] = a1,
again a contradiction.

Case 2. p > 1.
By assumption, β[1 : p− 1] = α[1 : p− 1]. Clearly, if β and α have a letter at

position p, then β[p] = α[p] because of βε = αε. Hence, it suffices to distinguish
the following subcases.

Subcase 2.1. α[p] = xj for some j ≤ r.
Clearly, if α[1 : p − 1] = a1 · · · ap−1, then we are directly done. To see this

note that every σ with xjσ �= ap defines a word w = ασ with w ∈ Lε(α)\Lε(β),
a contradiction. Next, suppose that α[1 : p − 1] contains at least one variable.
By the choice of α, we know that α[p − 1] /∈ X . Now, select a substitution σ
that meets xjσ = c, where c ∈ Σ, c �= β[p− 1], and c �= β[p]. Since |Σ| ≥ 3 such
a constant must exist. Moreover, for all x ∈ X \ {xj}, set σ(x) = ε. Now, one
easily verifies that ασ ∈ Lε(α) \ Lε(β).

Subcase 2.2. β[p] = xj for some j ≤ r′.
If α[1 : p] = a1 · · · ap−1ap, we are directly done. To see this, note that

Lε(a1 · · · ap−1apx) ⊇ Lε(α), and therefore, by construction, β[p] = ap, a con-
tradiction. Next, consider the case that α[1 : p − 1] contains at least one vari-
able. Let az = α[p]. Hence, by construction, Lε(β[1 : p − 1]x) ⊇ Lε(α) and
Lε(β[1 : p− 1]azx) �⊇ Lε(α), where x is a variable not occurring in β[1 : p− 1].
Let w ∈ Lε(α). Then, by definition, there is some substitution σ such that
w = α[1 : p−1]σazα[p+1 : m]σ, where m = |α|. Since β[1 : p−1]) = α[1 : p−1],
this directly implies w ∈ Lε(β[1 : p− 1]azx), a contradiction.

Subcase 2.3. β[p] = ε.
Hence, |α| > |β|. Let |β| = m. Since αε = βε, we know that α[m+1] = xr′+1.

Next, by the choice of α, we get α[m] /∈ X , and therefore β[m] = an. However,
this contradicts Lε(β) ⊇ Lε(α).

Subase 2.4. α[p] = ε.
Hence, |β| > |α|. Now, let |α| = m. First, let α[m] = xr. Since αε = βε, this

yields β[m+1] = xr+1. Because of β[m] = α[m], β must contain two consecutive
variables which violates the construction of β. Second, let α[m] = an. Again,
since αε = βε, we obtain β[m + 1] = xr+1. But clearly, Lε(α) ⊇ Lε(α), and
since, β[1 : m] = α, we obtain, by construction, β = α, a contradiction.

Clearly, there are no other cases to consider, and therefore α = β.
Finally, we discuss the case of |Σ| = 2. The underlying idea is as follows.

The required query learner simulates the query learner from the demonstra-
tion of Theorem 5 (see also the appendix). As one can show, the membership
query posed by the latter learner can equivalently replaced by restricted superset
query. Note that this approach works only in case that, regular erasing pattern
languages have to be learned. X

98 Jochen Nessel and Steffen Lange

4 Conclusion

In the present paper, we studied the learnability of erasing pattern languages
within Angluin’s [3] model of learning with queries. We mainly focused our
attention on the following problem: Which of the known results for non-erasing
pattern languages have their analogue when erasing pattern languages have to
be learned and which of them have not? As it turns out, concerning regular
pattern languages, there are no difference at all, while, in the general case, serious
differences have been observed.

References

1. Angluin, D. (1980), Finding pattern common to a set of strings, Journal of Computer
and System Sciences 21, 46–62. 86, 87, 88

2. Angluin, D. (1980), Inductive inference of formal languages from positive data,
Information and Control 45, 117–135.

3. Angluin, D. (1988), Queries and concept learning, Machine Learning 2, 319–342.
86, 87, 88, 89, 90, 92, 98

4. Erlebach, T., Rossmanith, P., Stadtherr, H., Steger, A., Zeugmann, T. (1997), Learn-
ing one-variable pattern languages very efficiently on average, in parallel, and by ask-
ing questions, In: Proc. Int. Conference on Algorithmic Learning Theory (ALT’97),
Lecture Notes in Artificial Intelligence 1316, pages 260–276, Springer-Verlag. 87

5. Gold, M. (1967), Language identification in the limit, Information and Control 10,
447–474. 86, 87

6. Hopcroft, J. E., Ullman J. D. (1979), Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley Publishing Company. 88, 96

7. Jiang, T., Salomaa, A., Salomaa, K., Yu, S. (1995), Decision problems for patterns,
Journal of Computer and System Sciences 50, 53–63. 86, 89, 95, 96

8. Kearns, M., Pitt, L. (1989), A polynomial-time algorithm for learning k-variable
pattern languages from examples, In: Proc. Workshop on Computational Learning
Theory (COLT’89), pages 57–71, Morgan Kaufmann Publ. 86

9. Lange, S., Wiehagen, R. (1991), Polynomial-time inference of arbitrary pattern lan-
guages, New Generation Computing 8, 361–370. 86, 87

10. Marron, A., Ko, K. (1987), Identification of pattern languages from examples and
queries, Information and Computation 74, 91–112. 86

11. Marron, A. (1988), Learning pattern languages from a single initial example and
from queries, In: Proc. Workshop on Computational Learning Theory (COLT’88),
pages 1–23, Morgan Kaufmann Publ. 87

12. Matsumoto, S., Shinohara, A. (1997), Learning pattern languages using queries,
In: Proc. European Conference on Computational Learning Theory (EuroCOLT’97),
Lecture Notes in Artificial Intelligence 1208, pages 185–197, Springer Verlag. 87,
88, 94

13. Mitchell, A. (1998), Learnability of a subclass of extended pattern languages, In:
Proc. ACM Workshop on Computational Learning Theory (COLT’98), pages 64–71,
ACM-Press. 86

14. Nix, R. P. (1983), Editing by examples, PhD Thesis, Technical Report 280, Yale
University, Dept. Computer Science. 86

15. Salomaa, A. (1994), Patterns (the formal language theory column), EATCS Bul-
letin 54, 46–62. 86, 89

Learning Erasing Pattern Languages with Queries 99

16. Salomaa, A. (1994), Return to patterns (the formal language theory column),
EATCS Bulletin 55, 144–157. 86, 89

17. Shinohara, T. (1983), Polynomial-time inference of extended regular pattern lan-
guages, In: Proc. RIMS Symposia on Software Science and Engineering, Lecture
Notes in Computer Science 147, pages 115–127, Springer-Verlag. 86

18. Shinohara, T., Arikawa, S. (1995), Pattern inference, In: Algorithmic Learning for
Knowledge-Based Systems, Lecture Notes in Artificial Intelligence 961, pages 259–
291, Springer-Verlag. 86

19. Rogers, H. Jr. (1987), Theory of Recursive Functions and Effective Computability,
MIT Press. 88

20. Valiant, L. G. (1984), A theory of the learnable, Communications of the ACM 27,
1134–1142. 86

A Appendix

Next, we provide some more details concerning the problem of how to prove The-
orem 5 in case that the underlying alphabet Σ contains exactly two constants.

Theorem. Let |Σ| = 2. The class of all regular erasing pattern languages
over Σ is polynomial learnable with additional information using membership
queries.
Proof. Because of the lack of space, we only sketch the general idea, thereby
skipping most of the details.

Suppose that Σ = {a, b}. Let α ∈ πr and w ∈ Lε(α) be given. Apply-
ing the procedure sshrink, O(|w|2) membership queries suffices to determine αε

(cf. Lemma 4, for the relevant details).
Hence, we may assume that αε = a1 · · ·an is given, too. Now, based on αε,

the variables in α can be determined as follows.
First, if ai = ai+1, it can easily be determined whether or not there is a

variable between ai and ai+1. For that purpose, it suffice to ask of whether or
not a1 · · · ai−1aibai+1 · · ·an ∈ Lε(α), where b �= ai. Second, by asking of whether
or not bαε ∈ Lε(α) (αεb ∈ Lε(α)), it can be determined whether or not α begins
(ends) with a variable, again assuming b �= a1 (b �= an).

Let α′ be the resulting pattern. If αε contains only a’s, for instance, we are
already done. Otherwise, αε contains a’s and b’s. Now, one has to determine of
whether or not there are variables in α′ at the changes of form ‘ab’ and ‘ba’.

There are a lot of cases to distinguish. In order to construct a pattern β with
Lε(β) = Lε(α), the following procedure has to be implemented.

(0) All changes ‘ab’ and ‘ba’ in α′ are marked ‘needs attention’.
(1) If there is a change of form ‘ab’ and ‘ba’, respectively, that needs attention,

then pick one and goto (2). Otherwise, set β = α′ and return β.
(2) Determine to which of the relevant cases the change fixed in (2) belongs.

Ask the corresponding queries and replace the change fixed in α′ by the
corresponding subpattern.

(3) Mark the selected/corresponding change as ‘attended’.
(4) Goto (1).

The missing details are specified in a way such that Conditions (i) to (iii) are
fulfilled, where

100 Jochen Nessel and Steffen Lange

(i) In none of the relevant cases, a new change of form ‘ab’ and ‘ba’, respectively,
is introduced.

(ii) In each of the relevant cases, at most three membership queries are necessary
to determine the subpattern which hast to be substituted.

(iii) In each of the relevant cases, the subpattern which is substituted is equiv-
alent to the corresponding subpattern in the unknown pattern α.

Obviously, (i) guarantees that this procedure terminates. By (ii), we know
that O(|α′|) additional membership queries will do. Moreover, combing (iii) with
Lemma 7 below, one may easily conclude that Lε(β) = Lε(α).

It remains to specify the relevant cases.
As a prototypical example, we discuss the following simple cases in detail.
Subsequently, let σε be the substitution that assigns the empty word ε to all

variables in X .
Case 1. α′ = α1aabbα2, where the change of form ‘ab’ is marked.
Ask whether or not α1aababbα2σε ∈ Lε(α). If the answer is ‘no’, no variable

appears in the target pattern at this change of form ‘ab’. If the answer is ‘yes’,
replace aabb by aaxbb. It is not hard to see that Condition (iii) is fulfilled.

Case 2. α′ = α1xabjyα2, where the change of form ‘ab’ is marked.
Now, there is no need to ask any membership query at all. By Lemma 8 below,

we know that a new variable between a and b does not change the erasing pattern
language generated by the corresponding pattern.

Due to the space constraints, further details concerning the remaining cases
are omitted. X

Lemma 7. Let α1, . . . , αn ∈ πr and let α = α1, . . . , αn. Moreover, let β ∈ πr

such that Lε(αi) = Lε(β) and, for all j �= i, vars(αj) ∩ vars(β) = ∅. Then,
Lε(α) = Lε(α1) · · ·Lε(αi−1)Lε(β)Lε(αi−1) · · ·Lε(αn).
Proof. Since α is regular, we have vars(αi)∩ vars(αj) = ∅ for all j with j �= i.
This gives Lε(α) = Lε(α1)Lε(α2) · · ·Lε(αn). The remainder is obvious. X

Lemma 8. Let j ∈ IN. Moreover, let αj = x1abjx2 and βj = y1ay2b
jy3. Then,

Lε(αj) = Lε(βj).
Proof. Let j ∈ IN be given. Obviously, Lε(αj) ⊆ Lε(βj). It remains to show
that Lε(βj) ⊆ Lε(αj).

Let σ be any substitution. We distinguish the following cases.
Case 1. y2σ ∈ {a}∗.
Hence, y2σ = ai for some i ∈ IN. Define σ′ by setting x1σ

′ = y1σai and x2σ
′ =

y3σ. Clearly, we get αjσ
′ = y1σaiabjy3σ = y1σaaibjy3σ = βjσ.

Case 2. y2σ ∈ {b}+.
Hence, y2σ = bi for some i ∈ IN. Define σ′ by setting x1σ

′ = y1σ and x2σ
′ =

biy3σ. Obviously, we get αjσ
′ = y1σabjbiy3σ = y1σabibjy3σ = βjσ.

Case 3. Otherwise.
Hence, y2σ = wabi for some i ∈ IN and some w ∈ Σ∗. Define σ′ by set-

ting x1σ
′ = y1σaw and x2σ

′ = biy3σ. Obviously, we get αjσ
′ = y1σawabjbiy3σ =

y1σawabibjy3σ = βjσ. X

Learning Recursive Concepts with Anomalies

Gunter Grieser� � Ste�en Lange�� and Thomas Zeugmann�

� Technische Universit�at Darmstadt� Fachbereich Informatik� Alexanderstr� ��

��	
� Darmstadt� Germany� e�mail
 grieser�informatik�tu�darmstadt�de
� Universit�at Leipzig� Institut f�ur Informatik� Augustusplatz �����

����� Leipzig� Germany� e�mail
 slange�informatik�uni�leipzig�de
� Medizinische Universit�at L�ubeck� Institut f�ur Theoretische Informatik� Wallstr� ��

	���� L�ubeck� Germany� e�mail
 thomas�tcs�mu�luebeck�de

Abstract� This paper provides a systematic study of inductive inference

of indexable concept classes in learning scenarios in which the learner is

successful if its �nal hypothesis describes a �nite variant of the target

concept � henceforth called learning with anomalies� As usual� we distin�

guish between learning from only positive data and learning from positive

and negative data�

We investigate the following learning models
 �nite identi�cation� conser�

vative inference� set�driven learning� and behaviorally correct learning�

In general� we focus our attention on the case that the number of allowed

anomalies is �nite but not a priori bounded� However� we also present

a few sample results that a�ect the special case of learning with an a

priori bounded number of anomalies� We provide characterizations of

the corresponding models of learning with anomalies in terms of �nite

tell�tale sets� The varieties in the degree of recursiveness of the relevant

tell�tale sets observed are already su�cient to quantify the di�erences in

the corresponding models of learning with anomalies�

In addition� we study variants of incremental learning and derive a com�

plete picture concerning the relation of all models of learning with and

without anomalies mentioned above�

� Introduction

Induction constitutes an important feature of learning� The corresponding theory
is called inductive inference� Inductive inference may be characterized as the
study of systems that map evidence on a target concept into hypotheses about it�
The investigation of scenarios in which the sequence of hypotheses stabilizes to an
accurate and �nite description of the target concept is of some particular interest�
The precise de�nitions of the notions evidence� stabilization� and accuracy go
back to Gold ���	 who introduced the model of learning in the limit�

The present paper deals with inductive inference of indexable classes of re

cursive concepts �indexable classes� for short�� A concept class is said to be an
indexable class if it possesses an e�ective enumeration with uniformly decid

able membership� Angluin �
	 started the systematic study of learning indexable
concept classes� �
	 and succeeding publications �cf�� e�g�� �
�	� for an overview�

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 1 0 1 - 1 1 5 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

found a lot of interest� since most natural concept classes form indexable classes�
For example� the class of all context sensitive� context free� regular� and pattern
languages as well as the set of all boolean formulas expressible as monomial�
k�CNF� k�DNF� and k�decision list constitute indexable classes�

As usual� we distinguish learning from positive data and learning from posi�
tive and negative data� synonymously called learning from text and informant�
respectively� A text for a target concept c is an in�nite sequence of elements of c
such that every element from c eventually appears� Alternatively� an informant
is an in�nite sequence of elements exhausting the underlying learning domain
that are classi�ed with respect to their membership to the target concept�

An algorithmic learner takes as input larger and larger initial segments of
a text �an informant� and outputs� from time to time� a hypothesis about the
target concept� The set of all admissible hypotheses is called hypothesis space�
When learning of indexable classes is considered� it is natural to require that
the hypothesis space is an e�ective enumeration of a �possibly larger� indexable
concept class� This assumption underlies almost all studies �cf�� e�g�� 	
�
����

Gold
s 	��� original model requires the sequence of hypotheses to converge to
a hypothesis correctly describing the target concept� However� from a viewpoint
of potential applications� it su�ces in most cases that the �nal hypothesis ap�
proximates the target concept su�ciently well� Blum and Blum 	�� introduced
a quite natural re�nement of Gold
s model that captures this aspect� In their
setting of learning recursive functions with anomalies� it is admissible that the
learner
s �nal hypothesis may di�er from the target function at �nitely many
data points� Case and Lynes 	�� adapted this model to language learning�

Learning with anomalies has been studied intensively in the context of learn�
ing recursive functions and recursively enumerable languages �cf�� e�g�� 	����� Pre�
liminary results concerning the learnability of indexable classes with anomalies
can be found in Tabe and Zeugmann 	���� Note that Baliga et al� 	�� studied the
learnability of indexable classes with anomalies� too� However� unlike all other
work on learning indexable classes� 	�� allows the use of arbitrary hypothesis
spaces �including those not having a decidable membership problem�� There�
fore� the results from 	�� do not directly translate into our setting�

The present paper provides a systematic study of learning indexable concept
classes with anomalies� We investigate the following variants of Gold�style con�
cept learning� �nite identi�cation� conservative inference� set�driven inference�
behaviorally correct learning� and incremental learning� We relate the resulting
models of learning with anomalies to one another as well as to the corresponding
versions of learning without anomalies� In general� we focus our attention to the
case that the number of allowed anomalies is �nite but not a priori bounded�
However� we also present a few sample results that a�ect the special case that
the number of allowed anomalies is a priori bounded�

Next� we mention some prototypical results� In the setting of learning with
anomalies� the learning power of set�driven learners� conservative learners� and
unconstrained IIMs does coincide� In contrast� when anomaly�free learning is
considered� conservative learners and set�driven learners are strictly less power�

1 0 2 Gunt e r Grie se r e t al.

ful� Moreover� a further di�erence to learning without anomalies is established
by showing that behaviorally correct learning with anomalies is strictly more
powerful than learning in the limit with anomalies� Furthermore� in case the
number of allowed anomalies is �nite but not a priori bounded� it is proved that
there is no need to use arbitrary hypothesis spaces in order to design superior
behaviorally correct learners� thus re�ning the corresponding results from ����
However� if the number of anomalies is a priori bounded� it is advantageous
to use arbitrary hypothesis spaces� In order to establish these results� we pro	
vide characterizations of the corresponding models of learning with anomalies
in terms of �nite tell	tale sets
cf� ����� As it turns out� the observed varieties in
the degree of recursiveness of the relevant tell	tale sets are already su
cient to
quantify the di�erences in the corresponding models of learning with anomalies�

Moreover� we derive a complete picture concerning the relation of the di�erent
models of incremental learning with and without anomalies�

� Preliminaries

��� Basic notions

Let IN � f�� �� �� � � �g be the set of all natural numbers� By h�� �i� IN� IN� IN we
denote Cantor�s pairing function� Let A and B be sets� As usual� A�B denotes
the symmetrical di�erence of A and B� i�e�� A�B �
A nB��
B nA�� We write
A�B to indicate that A�B �� �� For all a � IN� A �a B i� card
A�B� 	 a�
while A �� B i� card
A�B� �
� We let � � � denote the concatenation of two
possibly in�nite sequences � and � �

Any recursively enumerable set X is called a learning domain� By �
X � we
denote the power set of X � Let C � �
X � and let c � C� We refer to C and c

as to a concept class and a concept� respectively� Sometimes� we will identify
a concept c with its characteristic function� i�e�� we let c
x� � �� if x � c� and
c
x� �
� otherwise� What is actually meant will become clear from the context�

We deal with the learnability of indexable concept classes with uniformly
decidable membership de�ned as follows
cf� ����� A class of non	empty concepts C
is said to be an indexable concept class with uniformly decidable membership if
there are an e�ective enumeration
cj�j�IN of all and only the concepts in C and a
recursive function f such that� for all j � IN and all x � X � it holds f
j� x� � ��
if x � cj � and f
j� x� �
� otherwise� We refer to indexable concept classes with
uniformly decidable membership as to indexable classes� for short� and let IC
denote the collection of all indexable classes�

��� Gold�style concept learning

Let X be the underlying learning domain� let c � X be a concept� and let t �

xn�n�IN be an in�nite sequence of elements from c such that fxn j n � INg � c�
Then� t is said to be a text for c� By Text
c� we denote the set of all texts for c�
Let t be a text and let y be a number� Then� ty denotes the initial segment of t
of length y � �� Furthermore� we set content
ty� � fxn j n 	 yg�

1 0 3Le arning Re c ursiv e C o nc e pt s w it h A no malie s

Let C be an indexable class� Then� we let Text�C� be the collection of all
texts in

S
c�C Text�c��

As in ���	� we de
ne an inductive inference machine �abbr� IIM � to be an
algorithmic mapping from initial segments of texts to IN � f�g� Thus� an IIM
either outputs a hypothesis� i�e�� a number encoding a certain computer program�
or it outputs ���
 a special symbol representing the case the machine outputs
�no conjecture�
 Note that an IIM� when learning some target class C� is required
to produce an output when processing any admissible information sequence� i�e��
any initial segment of any text in Text�C��

The numbers output by an IIM are interpreted with respect to a suitably
chosen hypothesis space H � �hj�j�IN� Since we exclusively deal with the learn�
ability of indexable classes C� we always assume that H is also an indexing of
some possibly larger indexable class� Hence� membership is uniformly decidable
in H� too� If C � fhj j j � INg �C � fhj j j � INg�� then H is said to be a
class comprising �class preserving� hypothesis space for C �cf� ���	�� When an
IIM outputs some number j� we interpret it to mean that it hypothesizes hj�

We de
ne convergence of IIMs as usual� Let t be a text and let M be an IIM�
The sequence �M �ty��y�IN ofM �s hypotheses converges to a number j i� all but

nitely many terms of it are equal to j�

Now� we are ready to de
ne learning in the limit�

De�nition � ���� ��	
� Let C � IC� let c be a concept� let H � �hj�j�IN be a

hypothesis space� and let a � IN � f�g�
An IIM M LimaTxtH�identi�es c i�� for every t � Text�c�� there is a j � IN

with hj �a c such that the sequence �M �ty��y�IN converges to j�

M LimaTxtH�identi�es C i�� for all c� � C� M LimaTxtH�identi�es c
��

LimaTxt denotes the collection of all indexable classes C� for which there

are a hypothesis space H� � �h�j�j�IN and an IIM M such that M LimaTxtH��

identi�es C��

Subsequently� we write LimTxt instead of Lim�Txt� We adopt this convention
to all learning types de
ned below�

In general� it is not decidable whether or not an IIM has already converged on
a text t for the target concept c� Adding this requirement to the above de
nition
results in �nite learning �cf� ���	�� The resulting learning type is denoted by
FinaTxt � where again a � IN � f�g�

Next� we de
ne conservative IIMs� Intuitively speaking� conservative IIMs
maintain their actual hypothesis at least as long as they have not seen data
contradicting it�

De�nition � ���	
� Let C � IC� let c be a concept� let H � �hj�j�IN be a hypoth�

esis space� and let a � IN � f�g�
An IIM M Consv

a
TxtH�identi�es c i� M Lim

a
TxtH�identi�es c and� for

every t � Text�c� and for any two consecutive hypotheses k � M �ty� and j �
M �ty���� if k � IN and k �� j� then content �ty��� �� hk�

M ConsvaTxtH�identi�es C i�� for all c� � C� M ConsvaTxtH�identi�es c
��

For every a � IN � f�g� the resulting learning type ConsvaTxt is de
ned
analogously to De
nition ��

1 0 4 Gun t e r Grie se r e t al.

Next� we de�ne set�driven learning� Intuitively speaking� the output of a set�
driven IIM depends exclusively on the content of its input� thereby ignoring the
order as well as the frequency in which the examples occur�

De�nition � �����	� Let C � IC� let c be a concept� let H � �hj�j�IN be a

hypothesis space� and let a � IN � f�g�
An IIM M Sdr

a
TxtH�identi�es c i� M LimaTxtH�identi�es c and� for every

t� t� � Text�C� and for all n�m � IN� if content�tn� � content�t�m� then M �tn� �
M �t�m��

M SdraTxtH�identi�es C i�� for all c� � C� M SdraTxtH�identi�es c
��

For every a � IN � f�g� the resulting learning type SdraTxt is de�ned analo�
gously to De�nition 	�

At the end of this subsection� we provide a formal de�nition of behaviorally
correct learning�

De�nition
 ��
� ��	� Let C � IC� let c be a concept� let H � �hj�j�IN be a

hypothesis space� and let a � IN � f�g�
An IIM M BcaTxtH�identi�es c i�� for every t � Text�c� and for all but

�nitely many y � IN� hM�ty� �
a c�

M BcaTxtH�identi�es C i�� for all c� � C� M BcaTxtH�identi�es c
��

For every a � IN � f�g� the resulting learning type BcaTxt is de�ned analo�
gously to De�nition 	�

�� Incremental concept learning

Now� we formally de�ne the di
erent models of incremental learning� An or�
dinary IIM M has always access to the whole history of the learning process�
i�e�� it computes its actual guess on the basis of the whole initial segment of
the text t seen so far� In contrast� an iterative IIM is only allowed to use its
last guess and the next element in t� Conceptually� an iterative IIM M de�nes
a sequence �Mn�n�IN of machines each of which takes as its input the output of
its predecessor�

De�nition � �����	� Let C � IC� let c be a concept� let H � �hj�j�IN be a

hypothesis space� and let a � IN � f�g�
An IIM M ItaTxtH�identi�es c i�� for every t � �xn�n�IN � Text�c�� the

following conditions are ful�lled�

�	� for all n � IN� Mn�t� is de�ned� where M��t� � M �x�� and Mn���t� �
M �Mn�t�� xn����

��� the sequence �Mn�t��n�IN converges to a number j with hj �
a c�

M ItaTxtH�identi�es C i�� for each c� � C� M ItaTxtH�identi�es c
��

For every a � IN � f�g� the resulting learning type ItaTxt is de�ned analo�
gously to De�nition 	�

Let M be an iterative IIM as de�ned in De�nition � and t be a text�
Then� M��tn� denotes the last hypothesis output by M when processing tn�
i�e�� M��tn� � Mn�t�� We adopt this convention to all versions of incremental
learners de�ned below�

1 0 5Le arning Re c ursiv e C o nc e pt s w it h A no malie s

Next� we consider a natural relaxation of iterative learning� named k�bounded

example�memory inference� Now� an IIM M is allowed to memorize at most k
of the elements in t which it has already seen� where k � IN is a priori �xed�
Again� M de�nes a sequence �Mn�n�IN of machines each of which takes as input
the output of its predecessor� A k�bounded example�memory IIM outputs a
hypothesis along with the set of memorized data elements�

De�nition � �����	� Let C � IC� let c be a concept� let H � �hj�j�IN be a

hypothesis space� let a � IN � f�g� and let k � IN�
An IIM M Bema

kTxtH�identi�es c i�� for every t � �xn�n�IN � Text�c�� the
following conditions are satis�ed�

�	� for all n � IN� Mn�t� is de�ned� where M��t� � M �x�� � hj�� S�i such

that S� � fx�g and card�S�� � k and Mn���t� � M �Mn�t�� xn��� �
hjn��� Sn��i such that Sn�� � Sn � fxn��g and card�Sn��� � k�

�
� the jn in the sequence �hjn� Sni�n�IN of M 	s guesses converge to a number j

with hj �
a c�

M Bema
kTxtH�identi�es C i�� for each c� � C� M Bema

kTxtH�identi�es c��

For every k � IN and every a � IN�f�g� the resulting learning type Bema
kTxt

is de�ned analogously to De�nition 	� By de�nition� Bema
�Txt � ItaTxt �

Next� we de�ne learning by feedback IIMs� Informally speaking� a feedback
IIM M is an iterative IIM that is additionally allowed to make a particular type
of queries� In each learning stage n � 	� M has access to the actual input xn��
and its previous guess jn� Moreover� M computes a query from xn�� and jn
which concerns the history of the learning process� That is� the feedback learner
computes a data element x and receives a �Yes
No� answer A�x� such that
A�x� � 	� if x � content�tn�� and A�x� � �� otherwise� Hence� M can just
ask whether or not the particular data element x has already been presented in
previous learning stages�

De�nition
 �����	� Let C � IC� let c be a concept� let H � �hj�j�IN be a

hypothesis space� let a � IN � f�g� and let Q� IN�X � X be a total computable

function� An IIM M � with a computable query asking function Q� Fb
a
TxtH�

identi�es c i�� for every t � �xn�n�IN � Text�c�� the following conditions are

satis�ed�

�	� for all n � IN� Mn�t� is de�ned� where M��t� � M �x�� as well as Mn���t� �
M �Mn�t�� A�Q�Mn�t�� xn����� xn����

�
� the sequence �Mn�t��n�IN converges to a number j with hj �
a c provided A

truthfully answers the questions computed by Q�

M Fb
a
TxtH�identi�es C i�� for each c� � C� M Fb

a
TxtH�identi�es c��

For every a � IN � f�g� the resulting learning type Fb
a
Txt is de�ned analo�

gously to De�nition 	�

� Learning from positive data only

In this section� we study the power and the limitations of the various models
of learning with anomalies� We relate these models to one another as well as to

1 0 6 Gunt e r Grie se r e t al.

the di�erent models of anomaly�free learning� We are mainly interested in the
case that the number of allowed anomalies is �nite but not a priori bounded�
Nevertheless� in order to give an impression of how the overall picture changes
when the number of allowed anomalies is a priori bounded� we also present
selected results for this case�

��� Gold�style learning with anomalies

Proposition � summarizes the known relations between the considered models
of anomaly�free learning from text�

Proposition � ����� �	� �
���
FinTxt � ConsvTxt � SdrTxt � LimTxt � BcTxt � IC�

In the setting of learning recursive functions the �rst observation made when
comparing learning in the limit with anomalies to behaviorally correct inference
was the error correcting power of Bc�learners� i�e�� Ex� � Bc 	cf�� e�g��
�� �
��
Interestingly enough� this result did not translate into the setting of learning
recursively enumerable languages from positive data 	cf�
�
�� But still� a certain
error correcting power is preserved in this setting� since LimaTxt � BcbTxt

provided a � �b �cf� �����
When comparing learning with and without anomalies in our setting of learn�

ing indexable classes	 it turns out that even
nite learners may become more
powerful than Bc�learners�

Theorem �� Fin�Txt n BcTxt �� ��

However	 the opposite is also true� For instance	 PAT 	 the well�known class
of all pattern languages �cf� ����	 witnesses the even stronger result�

Theorem �� ConsvTxt n Fin�Txt �� ��

As we will see	 the relation between the standard learning models changes
considerably	 if it is no longer required that the learner must almost always out�
put hypotheses that describe the target concept correctly� The following picture
displays the established coincidences and di
erences by relating the models of
learning with anomalies to one another and by ranking them in the hierarchy of
the models of anomaly�free learning�

Fin�Txt � Consv�Txt � Sdr
�
Txt � Lim�Txt � Bc�Txt � IC

� � � � �
FinTxt � ConsvTxt � SdrTxt � LimTxt � BcTxt

To achieve the overall picture	 we establish characterizations of all models of
learning with a
nite but not a priori bounded number of anomalies� On the
one hand	 we present characterizations in terms of
nite tell�tale sets� On the
other hand	 we prove that some of the learning models coincide�

Proposition � �����	� For all C � IC and all a � IN � f�g� C � Lim
a
Txt i�

there is an indexing �cj�j�IN of C and a recursively enumerable family �Tj�j�IN
of �nite sets such that

1 0 7Le arning Re c ursiv e C o nc e pt s w it h A no malie s

��� for all j � IN� Tj � cj�

��� for all j� k � IN� if Tj � ck � cj� then ck �a cj �

The characterization of Fin�Txt is similar to the known characterization of
FinTxt �cf� ���	��

Theorem �� For all C � IC� C � Fin�Txt i� there is an indexing �cj�j�IN of C
and a recursively generable family �Tj�j�IN of �nite sets such that

��� for all j � IN� Tj � cj�

��� for all j� k � IN� if Tj � ck� then ck �
� cj �

In contrast to Proposition �
 when a �nite number of errors in the �nal
hypothesis is allowed
 conservative IIMs become exactly as powerful as uncon�
strained IIMs�

Theorem �� Lim�Txt � Consv�Txt�

Proof� Let C � Lim
�
Txt
 let H � �hj�j�IN be a hypothesis space
 and let M

be an IIM that Lim�TxtH
identi�es C� Moreover
 assume that M never outputs
���� The conservative IIM M � uses the following hypothesis space H�� For all
j � IN and x � X
 we let h�j�x � hj n fxg� Moreover
 we let H� be the canonical
enumeration of all those concepts h�j�x�

Let c � C
 let t � �xj�j�IN be a text for c
 and let y � IN� On input ty
 M �

determines j � M �ty�
 and outputs the canonical index of h�j�x� in H��

It is straightforward to verify that M is a conservative IIM that witnesses
C � Lim�Txt� �

As it turns out
 when learning with anomalies is considered
 set�driven learn�
ers become exactly as powerful as unconstrainted IIMs
 again nicely contrasting
Proposition ��

Theorem �� Sdr�Txt � Lim�Txt�

However
 there is a di�erence between conservative inference and set�driven
learning
 on the one hand
 and learning in the limit
 on the other hand
 which
we want to point out next� While learning in the limit is invariant to the choice
of the hypothesis space �cf� ���	�
 conservative inference and set�driven learning

respectively
 is not� Moreover
 in order to design a superior conservative and a
set�driven learner
 respectively
 it is sometimes inevitable to select a hypothesis
space that contains concepts which are not subject to learning�

Theorem ��

��� There is an indexable class C � Consv�Txt such that� for all class preserving

hypothesis spaces H for C� there is no IIM M that Consv�TxtH�identi�es C�
��� There is an indexable class C � Sdr

�
Txt such that� for all class preserving

hypothesis spaces H for C� there is no IIM M that Sdr
�
TxtH�identi�es C�

For conservative learning and set�driven inference without anomalies
 the
analogue of Theorem � holds
 as well �cf� ���
��	��

Next
 we study behaviorally correct identi�cation� As we will see
 �nite tell�
tale sets form a conceptual basis that is also well�suited to characterize the

1 0 8 Gun t e r Grie se r e t al.

collection of all Bc�Txt�identi�able indexable classes� Surprisingly� the existence
of the corresponding tell�tale sets is still su�cient�

Theorem �� For all C � IC� C � Bc�Txt i� there is an indexing �cj	j�IN of C
and a family �Tj	j�IN of �nite sets such that

�
	 for all j � IN� Tj � cj�

��	 for all j� k � IN� if Tj � ck � cj� then ck �� cj �

Proof� Due to the space constraint we sketch the su�ciency part� only� First�
we de�ne an appropriate hypothesis space H � �hhj�ki	j�k�IN� Let �Fj	j�IN be an
e
ective enumeration of all �nite subsets of X and let �wj	j�IN be the lexico�
graphically ordered enumeration of all elements in X �

We subsequently use the following notions and notations� For all c � X and
all z � IN� we let cz � fwr j r � z� wr � cg� Moreover� for all j� k� z � IN� we
let S�j�k�z� be the set of all indices r � k that meet �i	 Fj � cr and �ii	� for all
r� � r with cr� � Fj� c

z
r � czr� �

Now� we are ready to de�ne the required hypothesis space H� For all j� k � IN
we de�ne the characteristic function of hhj�ki as follows� If S�j�k�z� � �� we set
hhj�ki�wz	 � �� If S�j�k�z� 	� �� we let n � max S�j�k�z� and set hhj�ki�wz	 �
cn�wz	�

Since membership is uniformly decidable in �cj	j�IN� we know that H consti�
tutes an admissible hypothesis space�

The required IIM M is de�ned as follows� Let c � C� t � Text�c	� and y � IN�

IIM M � �On input ty proceed as follows�
Determine j � IN with Fj � content�ty	 and output hj� yi��

Due to lack of space� the veri�cation of M �c correctness is omitted� �

Note that Baliga et al� ��� have recently shown that the same characterizing
condition completely describes the collection of all indexable classes that are
Bc�Txt�identi�able with respect to arbitrary hypothesis spaces �including hy�
pothesis space not having a decidable membership problem	� Hence� our result
re�nes the result from ��� in that it shows that� in order to Bc�Txt�identify an
indexable class� it is always possible to select a hypothesis space with uniformly
decidable membership� However� as we see next� it is inevitable to select the
actual hypothesis space appropriately�

Theorem �� There is an indexable class C � Bc�Txt such that� for all class

preserving hypothesis spaces H for C� there is no IIM M that Bc�TxtH�learns C�

In contrast� BcTxt is invariant to the choice of the hypothesis space�
To be complete� note that it is folklore that there are indexable classes which

are not Bc�Txt�identi�able� Furthermore� applying the stated characterizations
of the learning types Fin�Txt � Lim�Txt � and Bc�Txt� the following hierarchy can
be shown�

Theorem �� Fin�Txt � Lim�Txt � Bc�Txt � IC�

At the end of this subsection� we turn our attention to the case that the
number of allowed anomalies is a priori bounded� On the one hand� Case and
Lynes� ��� result that Lim�aTxt � BcaTxt nicely translates into our setting�

1 0 9Le arning Re c ursiv e C o nc e pt s w it h A no malie s

Surprisingly� the opposite is also true� i�e�� every IIM that BcaTxt�identi�es a
target indexable class can be simulated by a learner that Lim�aTxt�identi�es
the same class� as expressed by the following theorem�

Theorem ��� For all a � IN� BcaTxt � Lim�aTxt�

Proof� Let a � IN� As mentioned above� Lim�aTxt � BcaTxt can be shown by
adapting the corresponding ideas from ��	
see also ���	� for the relevant details��

Next� we verify that BcaTxt � Lim�aTxt � Let C � BcaTxt� let H be a hypoth

esis space� and let M be an IIM that BcaTxtH�identi�es C� Since membership is
uniformly decidable in H� the set f
j� k� j hj ���a hkg is recursively enumerable�
Hence� without loss of generality� we may assume that there is a total recursive
function f � IN� IN � IN such that ff
n� j n � INg � f
j� k� j hj ���a hkg�

The required IIM M � also uses the hypothesis space H� Let c � C� t � Text
c��
and y � IN�

IIM M �� �On input ty proceed as follows�
If y � �� set z � �� determine j� � M
t��� and output j�� If y � �� determine
j � M �
ty���� For all s � z� � � � � y� determine js � M
ts�� and test whether
or not
j� js� � ff
n� j n � yg� In case there is no such pair� then output j�
Otherwise� set z � y and output jy��

Since M BcaTxtH�identi�es c from t� there has to be a least y such that� for
all y� � y� hM�t

y� � �
a c� and therefore� for all y�� y�� � y� hM�t

y�� �
�a hM�t

y�� ��

Hence� M � converges on t to a hypothesis j that meets hj ��a c� �

Applying Theorem �� we may conclude�

Corollary ��� For all C � IC and all a � IN� C � BcaTxt i� there is an indexing

cj�j�IN of C and a recursively enumerable family
Tj�j�IN of �nite sets such that

�� for all j � IN� Tj � cj� and

�� for all j� k � IN� if Tj � ck and ck � cj� then ck ��a cj�

The latter corollary nicely contrasts the results in ��	� When arbitrary hy

pothesis spaces are admissible
including hypothesis space not having a decidable
membership problem�� there is no need to add any recursive component� i�e�� the
existence of the corresponding tell
tale sets is again su�cient�

Moreover� the relation between set
driven learners and conservative inference
changes completely� if the number of allowed anomalies is a priori bounded�

Theorem ��� Consv�Txt n
S
a�IN Sdr

a
Txt �� ��

Theorem ��� For all a � IN� SdraTxt 	 ConsvaTxt�

The relation between conservative learners and unconstrained IIMs is also
a�ected� if the number of allowed anomalies is a priori bounded�

Theorem ��� For all a � IN� LimaTxt 	 Consva��Txt 	 Lima��Txt�

Proof� Let a � IN� By de�nition� we get Consva��Txt � Lima��Txt � More

over� Consva��Txt n Lima

Txt �� � follows via Theorem �� below� Furthermore�
Lima��Txt nConsva��Txt �� � can be shown by diagonalization�

It remains to show that LimaTxt � Consva��Txt � To see this� recall the
de�nition of the conservative IIM M � from the demonstration of Theorem �� It

1 1 0 Gunt e r Grie se r e t al.

is easy to see that the �nal hypothesis of M � di�ers at most at one data point
from the �nal hypothesis of the unconstrained IIM M which M � simulates� �

Finally� when learning with an a priori bounded number of allowed anomalies
is considered� the existence of in�nite hierarchies of more and more powerful
Fin�learners� Consv�learners� Lim�learners� and Bc�learners� parameterized in
the number of allowed anomalies� can be shown� The following theorem provides
the missing piece to establish these in�nite hierarchies�

Theorem ��� For all a � IN� Fin�a��Txt nBcaTxt �� ��

��� Incremental learning with anomalies

Proposition � summarizes the known results concerning incremental learning�

Proposition � ����	
�
	
� ItTxt � FbTxt�

	�� ItTxt � Bem�Txt�

	�� For all k � IN� BemkTxt � Bemk��Txt�

	
� Bem�Txt n FbTxt �� ��
	�� FbTxt n

S
k�INBemkTxt �� ��

The overall picture remains unchanged for incremental learning with a �nite
number of allowed anomalies�

More speci�cally� iterative learners that have the freedom to store one addi�
tional example may outperform feedback learners that are allowed to make up
to �nitely many errors in their �nal hypothesis�

Theorem ��� Bem�Txt n Fb
�
Txt �� ��

Proof� The separating class C is de�ned as follows� C contains c� � fag� and�
for all j �
� cj � fa� j
 � � � �jg � fbg�� Moreover� for all j� k�m �
� C
contains the concept c�j�k�m � fa� j
 � � � �jg � fa�hj�ki��g � fb� j
 � � � mg�

Claim
� C � Bem�Txt �
The required IIM M updates its example�memory as follows� As long as no

element from fbg� occurs� M memorizes the maximal element from fag� seen
so far� Otherwise� it memorizes the maximal element from fbg� that has been
presented so far� In addition� M updates its hypotheses in accordance with the
following cases�

Case
� M has never received an element from fbg��
Then� M guesses c��
Case �� M receives an element x from fbg� for the �rst time�

Let x � bm� If M has memorized an element of type a�j� M guesses cj� If
it has memorized an element of type a�hj�ki��� M guess c�j�k�m� If x is the �rst
element presented at all� M simply guesses c��

Case �� Otherwise�

Let x be the new element presented� let c� be M �s actual guess� and let bm

be the element memorized by M �
First� if x � fbg� and c� is of type c�j�k�m� M guesses c�j�k�m�� where m� �

max fm� jxjg� If x � fbg� and c� is of type cj� M guesses c��

1 1 1Le arning Re c ursiv e C o nc e pt s w it h A no malie s

Second� if x � fag� and x � c�� M guesses c�� If x � fag�� x �� c�� and x
is of type a�j� M guesses cj � Otherwise� i�e�� x � fag�� x �� c�� and x is of type
a�hj�ki��� M guesses c�j�k�m

The veri�cation of M �s correctness is straightforward�
Claim �� C �� Fb

�
Txt �

Suppose to the contrary that there is a feedback learner M � that witnesses
C � Lim�Txt� Hence� there is a locking sequence � for c�� i�e�� � is a �nite
sequence with content��� � c� and� for all �nite sequences � with content��� �
c�� M

�
��� � �� 	M �

�����
Let j be the least index with content ��� � cj� Consider M when fed the

text t 	 � � a� � � � � a�j � b � b� b� � b� b�� b� � � � � � b� b�� � � � � bn � � � � for cj � Since M �

learns cj � M
� converges on t� Hence� there is a y such that �i� the last element

in ty equals b and �ii�� for all r � IN� M �
��ty� 	 M �

��ty�r��
Finally� �x � such that ty 	 � � a� � � � � a�j � � � Let k�m be the least indices

such that content�ty� � c�j�k�m and a�hj�ki�� is an element from c� which M �

has never asked for when processing ty� Consider M � when fed the text t� 	
� � a� � � � � a�j � a�hj�ki�� � � � b� b� � � � for c�j�k�m� By the choice of � und y� M �

converges on t and t� to the same hypothesis� �To see this note that the b�s at
the end of t� guarantee that M � almost always ask the same question as in case it
is fed ty� thereby� due to choice of a�hj�ki��� always receiving the same answer��
Since cj �	� c�j�k�m� M

� cannot learn both concepts� a contradiction� �

The opposite holds� as well� Feedback queries may compensate the ability of
a bounded
example memory learner to memorize any a priori �xed number of
examples and to make �nitely many errors in its �nal hypothesis�

Theorem ��� FbTxt n
S

k�INBem�
kTxt �	 �

Proof� We de�ne the separating class C as follows� We set C 	
S

k�IN Ck�
where� for all k � IN� the subclass Ck is de�ned as follows�

Let �Fj�j�IN be a repetition
free enumeration of all �nite sets of natural
numbers� By convention� let F� 	 �� Moreover� we let P� 	 fbg� and Pj�� 	
Pj n fb

npj j n � �g� where� for all j � IN� pj is the j � �
st prime number�
Let k � IN� Then� Ck contains the concept c� 	 fag� as well as� for all

j�m � � and all l�� � � � � lk with j � l� � � � � � lk� the concept c�j�m�l������lk� 	

fa� j � � 	 � jg 	 fal� � � � � � alkg 	 fbj�� j j � Fmg 	 Phl� �����lki 	 fdjg�
By de�nition� C contains exclusively in�nite concepts� and thus C � FbTxt

�cf�
��� for the relevant details��
For proving C ��

S
k�IN Bem�

kTxt � it su�ces to show that� for every k � IN�
Ck �� Bem�

kTxt � The corresponding veri�cation is part of the demonstration of
Theorem �� below� �

Our next result illustrates the error
correcting power of bounded example

memories� As it turns out� every additional example which an incremental learner
can memorize may help to correct up to �nitely many errors�

Theorem ��� For all k � IN� Bemk��Txt n Bem
�
kTxt �	 ��

Proof� Let k � IN� We claim that Ck �cf� the demonstration of Theorem ��
above� separates the learning types Bemk��Txt and Bem�

kTxt �

1 1 2 Gunt e r Grie se r e t al.

Claim �� Ck � Bemk��Txt �

The required bounded example�memory learner M behaves as follows� As a
rule� M memorizes the k � � longest elements from fag� which it has seen so
far� Moreover� M updates its hypotheses in accordance with the following cases�

Case �� M has never received an element from fdg��

Then� M outputs an index for the concept c� that allows M to determine all
elements from fbg� that have been presented so far�

Case �� M receives an element x from fdg� for the �rst time�

Let x � dj and let S� be the set of all elements from fbg� seen so far� M
outputs an index for the concept fa� j � � � � jg � fdjg � S� that allows M to
determine the elements in S��

Case �� Otherwise�

We distinguish the following subcases�

Case ���� M has memorized k � � elements s with jsj � j�

Let x be the new element presented� let S � fal� � � � � � alkg be the set of
elements memorized by M � and let S� be the set of elements from fb�g that are
encoded in M 	s last hypothesis� If x � fbg� n Phl� �����lki� we let S� � S� � fxg�
Otherwise� S� remains unchanged� Moreover�M outputs an index for the concept
fa� j � � � � jg � S � S� � Phl������lki � fdjg that allows M to recompute the
elements in S��

Case ���� Not Case ����

As above� M outputs an index of the concept fa� j � � � � jg � fdjg � S�

that allows M to determine the elements in S�� where S� is again the set of all
elements from fbg� seen so far�

The veri
cation of M 	s correctness is straightforward�

Claim �� Ck �� Bem�
kTxt �

Suppose to the contrary that there is a k�bounded example�memory learner
M � that witnesses C � Lim�Txt � Hence� there is a locking sequence � for c��
i�e�� � is a
nite sequence with content��� � c� and� for all
nite sequences �
with content��� � c�� 	��M

�
��� � ��� � 	��M

�
������

� Now let j � max fjxj j x �
content���g� Similarly as in the demonstration of Theorem
 in ����� one may
use counting arguments to show that there are indices l�� l

�
�� � � � � lk� l

�
k such that

Conditions �a� to �d� are ful
lled� where

�a� j
 l�
 l�
 � � �
 lk�
�b� j
 l��
 l��
 � � �
 l�k�
�c� fl�� l�� � � � � lkg �� fl��� l

�
�� � � � � l

�
kg�

�d� M �
��� � al� � � � � � alk� � M �

��� � al�
� � � � � � al�

k��

Assume that hl�� � � � � lki
 hl��� � � � � l
�
ki� Let t� and t�� be the lexicographically

ordered text for Phl������lki and Phl�
�
�����l�

k
i� respectively� Moreover� we set �� �

� � a� a�� � � � � aj� Since M � infers c�j���l������lk�� there is a
nite sequence � with
content�� � � Phl� �����lki such that� for all
nite sequences � with content��� �

Phl������lki� 	��M
�
���

� � al� � � � � � alk � dj � � �� � 	��M �
���

� � al� � � � � � alk � dj � � � ����

� Recall that M outputs pairs hj� Si� By convention� we let ���hj� Si� � j�

1 1 3Le arning Re c ursiv e C o nc e pt s w it h A no malie s

Now� �x m� � IN with Fm� � f� j b� � content�� �g and consider M � when
successively fed the text t � �� � al� � al� � � � � � alk � dj � � � t� for c�j���l������lk� and

the text t� � �� �al
�

� � al
�

� � � � � � al
�

k �dj � � � t�� for c�j�m��l�
�
�����l�

k
�� respectively� By the

choice of � and � and since� by de�nition� Phl�
�
�����l�

k
i � Phl������lki� we may conclude

that M � converges to the same hypothesis when fed t and t�� respectively� Since
c�j���l������lk� ��

� c�j�m� �l�
�
�����l�

k
�� M

� cannot learn both concepts� a contradiction� �

For incremental learning with anomalies� Proposition � rewrites as follows�

Corollary ���

�	� It�Txt � Fb
�
Txt�

�
� It�Txt � Bem�
�Txt�

��� For all k � IN� Bem�
kTxt � Bem�

k��Txt�

��� Bem�
�Txt n Fb�Txt �� ��

��� Fb�Txt n
S

k�INBem�
kTxt �� ��

� Learning from positive and negative data

In the section� we brie
y summarize the results that can be obtained when
studying learning with anomalies from positive and negative data�

Let X be the underlying learning domain� let c � X be a concept� and
let i � ��xn� bn��n�IN be any sequence of elements of X � f���g such that
content�i� � fxn j n � INg � X � content��i� � fxn j n � IN� bn � �g � c and
content��i� � fxn j n � IN� bn � �g � X n c � c� Then� we refer to i as an
informant� By Info�c� we denote the set of all informants for c�

For all a � IN 	 f
g� the standard learning models FinaInf � ConsvaInf �
LimaInf and BcaInf are de�ned analogously as their text counterparts by re�
placing text by informant� Moreover� we extend the de�nitions of all variants of
iterative learning in the same manner and denote the resulting learning types
by ItaInf � FbaInf � and Bema

kInf � where k � IN�
Since IC � ConsvInf �cf� �	���� we may easily conclude�

Corollary ���

For all a � IN 	 f
g� ConsvInf � ConsvaInf � LimaInf � BcaInf �

Moreover� one can easily show that the known inclusions FinTxt � FinInf

and FinInf � ConsvTxt �cf� �	��� rewrite as follows�

Theorem ��� Fin�Txt � Fin�Inf � Consv�Txt�

Concerning incremental learning� it has recently be shown that IC � FbInf �
Bem�Inf �cf� �	
��� Clearly this allows for the following corollary�

Corollary ��� For all a � IN 	 f
g� ConsvInf � Fb
a
Inf � Bema

�Inf �

Moreover� it is folklore that IC � It�Inf � In contrast� if the number of allowed
anomalies is a priori bounded� an in�nite hierarchy of more and more powerful
iterative learners can be observed�

Theorem ��� ItInf � It�Inf � It�Inf � � � � � It�Inf � ConsvInf �

Finally� it is not hard to verify that the results obtained so far prove the
existence of an in�nite hierarchy of more and more powerful �nite learners pa�
rameterized in the number of allowed anomalies�

1 1 4 Gun t e r Grie se r e t al.

References

�� D� Angluin� Finding patterns common to a set of strings� Journal of Computer and
System Sciences� ��������� �	
��

�� D� Angluin� Inductive inference of formal languages from positive data� Information
and Control� �����
����� �	
��

�� G�R� Baliga� J� Case� and S� Jain� The synthesis of language learners� Information
and Computation� ���������� �			�

�� J� B�arzdi�n�s� Two theorems on the limiting synthesis of functions� In Theory of Algo�
rithms and Programs Vol� �� pages
��

� Latvian State University� �	
�� �Russian��

�� L� Blum and M� Blum� Toward a mathematical theory of inductive inference� In�
formation and Control� �
��������� �	
��

�� J� Case and C� Lynes� Machine inductive inference and language identi�cation�
In Proc� �th International Colloquium on Automata� Languages and Programming�
Lecture Notes in Computer Science ���� pages ��
����� Springer�Verlag� Berlin�
�	
��

� J� Case and C�H� Smith� Comparison of identi�cation criteria for machine inductive
inference� Theoretical Computer Science ����	������ �	
��

� J� Case� S� Jain� S� Lange� and T� Zeugmann� Incremental concept learning for
bounded data mining� Information and Computation ����
������ �			�

	� M� Fulk� Prudence and other restrictions in formal language learning� Information
and Computation�
������� �		��

��� E�M� Gold� Language identi�cation in the limit� Information and Control� �����
�
�
�� �	�
�

��� S� Jain� D� Osherson� J� Royer� and A� Sharma� Systems that Learn � �nd Edition�
An Introduction to Learning Theory� MIT Press� Cambridge� Mass�� �			�

��� S� Lange and G� Grieser� On the strength of incremental learning� In Proc� ��th In�
ternational Conference on Algorithmic Learning Theory� Lecture Notes in Arti�cial
Intelligence �
��� pages ��
����� Springer�Verlag� Berlin� �			�

��� S� Lange and T� Zeugmann� Types of monotonic language learning and their
characterization� In Proc� 	th Annual ACM Workshop on Computational Learning
Theory� pages �

��	�� ACM Press� New York� �		��

��� S� Lange and T� Zeugmann� Language learning in dependence on the space of hy�
potheses� In Proc�
th Annual ACM Conference on Computational Learning Theory�
pages ��
����� ACM Press� New York� �		��

��� S� Lange and T� Zeugmann� Incremental learning from positive data� Journal of
Computer and System Sciences� ���

����� �		��

��� S� Lange and T� Zeugmann� Set�driven and rearrangement�independent learning
of recursive languages� Mathematical Systems Theory� �	��		����� �		��

�
� T� Tabe and T� Zeugmann� Two variations of inductive inference of languages from
positive data� Technical Report RIFIS�TR�CS����� Kyushu University� �		��

�
� K� Wexler and P� Culicover� Formal Principles of Language Acquisition� MIT
Press� Cambridge� Mass�� �	
��

�	� R� Wiehagen� Limes�Erkennung rekursiver Funktionen durch spezielle Strategien�
Journal of Information Processing and Cybernetics �EIK�� ���	��		� �	
��

��� T� Zeugmann and S� Lange� A guided tour across the boundaries of learning
recursive languages� In K�P� Jantke and S� Lange� editors� Algorithmic Learning
for Knowledge�Based Systems� Lecture Notes in Arti�cial Intelligence 	��� pages
�	����
� Springer�Verlag� Berlin� �		��

1 1 5Le arning Re c ursiv e C o nc e pt s w it h A no malie s

Identification of Function Distinguishable

Languages

Henning Fernau

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen
Sand 13, D-72076 Tübingen, Germany
fernau@informatik.uni-tuebingen.de

Abstract. We show how appropriately chosen functions which we call
distinguishing can be used to make deterministic finite automata back-
ward deterministic. These ideas can be exploited to design regular lan-
guage classes identifiable in the limit from positive samples. Special cases
of this approach are the k -reversible and terminal distinguishable lan-
guages as discussed in [1,8,10,17,18].

1 Introduction

The learning model we use is identification in the limit from positive samples as
proposed by Gold [13]. In this well-established model, a language class L (defined
via a class of language describing devices D as, e.g., grammars or automata) is
said to be identifiable if there is a so-called inference machine I to which as input
an arbitrary language L ∈ L may be enumerated (possibly with repetitions) in
an arbitrary order, i.e., I receives an infinite input stream of words E(1), E(2),
. . . , where E : N → L is an enumeration of L, i.e., a surjection, and I reacts
with an output device stream Di ∈ D such that there is an N(E) so that, for all
n ≥ N(E), we have Dn = DN(E) and, moreover, the language defined by DN(E)

equals L.
Recently, Rossmanith [19] defined a probabilistic variant of Gold’s model

which he called learning from random text. In fact, the only languages that are
learnable in this variant are those that are also learnable in Gold’s model. In
that way, our results can also transferred into a stochastic setting.

This model is rather weak (when considering the descriptive capacity of
the device classes which can be learned in this way), since Gold already has
shown [13] that any language class which contains all finite languages and one
infinite language is not identifiable in the limit from positive samples. On the
other hand, the model is very natural, since in most applications, negative sam-
ples are not available. There are several ways to deal with this sort of weakness:

1. One could allow certain imprecision in the inference process; this has been
done in a model proposed by Wiehagen [25] or within the PAC model pro-
posed by Valiant [24] and variants thereof as the one suggested by Angluin [2]
where membership queries are admissible, or, in another sense, by several

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 116–130, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Identification of Function Distinguishable Languages 117

heuristic approaches to the learning problem (including genetic algorithms
or neural networks).

2. One could provide help to the learner by a teacher, see [2].
3. One could investigate how far one could get when maintaining the original

deterministic model of learning in the limit.

The present paper makes some steps in the third direction.
The main point of this paper is to give a unified view on several identifiable

language families through what we call f -distinguishing functions. In particular,
this provides, to our knowledge, the first complete correctness proof of the iden-
tifiability of some language classes proposed to be learnable, as, e.g., in the case
of terminal distinguishable languages. Among the language families which turn
out to be special cases of our approach are the k-reversible languages [1] and
the terminal-distinguishable languages [17,18], which belong, according to Gre-
gor [14], to the most popular identifiable regular language classes. Moreover, we
show how to the ideas underlying the well-known identifiable language classes
of k-testable languages, k-piecewise testable languages and threshold testable
languages transfer to our setting.

The paper is organized as follows: In Section 2, we provide both the nec-
essary background from formal language theory and introduce the central con-
cepts of the paper, namely the so-called distinguishing functions and the function
distinguishable grammars, automata and languages. Furthermore, we introduce
function canonical automata which will become the backbone of several proofs
later on. In Section 3, several characteristic properties for function distinguish-
able languages are established. Section 4 shows the inferrability of the class of
f -distinguishable languages (for each distinguishing function f), while Section 5
presents a concrete inference algorithm which is quite similar to the one given
by Angluin [1] in the case of 0-reversible languages. Section 6 exhibits several
interesting special cases of the general setting, relating to k-testable languages,
k-piecewise testable languages and threshold testable languages. Section 7 con-
cludes the paper, indicating practical applications of our method and extensions
to non-regular language families.

2 Definitions

2.1 Formal language prerequisites

Σ∗ is the set of words over the alphabet Σ. Σk (Σ<k) collects the words whose
lengths are equal to (less than) k. λ denotes the empty word. Pref(L) is the set
of prefixes of L and u−1L = { v ∈ Σ∗|uv ∈ L } is the quotient of L ⊆ Σ∗ by u.

We assume that the reader knows that regular languages can be character-
ized either (1) by left-linear grammars G = (N, T, P, S), where N is the set of
nonterminal symbols, T is the set of terminal symbols, P ⊂ N × (N ∪ {λ})T ∗

is the rule set and S ∈ N is the start symbol, or (2) by (deterministic) finite
automata A = (Q, T, δ, q0, QF), where Q is the state set, δ ⊆ Q× T ×Q is the
transition relation, q0 ∈ Q is the initial state and QF ⊆ Q is the set of final

118 Henning Fernau

states. As usual, δ∗ denotes the extension of the transition relation to arbitrarily
long input words. The language defined by a grammar G (or an automaton A)
is written L(G) (or L(A), respectively). An automaton is called stripped iff all
states are accessible from the initial state and all states lead to some final state.
Observe that the transition function of a stripped deterministic finite automaton
is not total in general.

Let A = (Q, T, δ, q0, QF) be a finite automaton. We call an automaton A′ =
(Q′, T, δ′, q0, Q

′
F) general subautomaton if Q′ ⊆ Q, δ′ ⊆ δ and Q′

F ⊆ QF . The
stripped subautomaton of some finite automaton A = (Q, T, δ, q0, QF) is obtained
by removing all states from Q which are not accessible from the initial state and
all states which do not lead to some final state, together with all triples from
δ which contain states which have to be removed according to the formulated
rules.

We denote the minimal deterministic automaton of the regular language L
by A(L). Recall that A(L) = (Q, T, δ, q0, QF) can be described as follows: Q =
{u−1L|u ∈ Pref(L)}, q0 = λ−1L = L; QF = {u−1L|u ∈ L}; and δ(u−1L, a) =
(ua)−1L with u, ua ∈ Pref(L), a ∈ T . According to our definition, any minimal
deterministic automaton is stripped.

Furthermore, we need two automata constructions in the following:
The product automaton A = A1 × A2 of two automata Ai = (Qi, T, δi,

q0,i, QF,i) for i = 1, 2 is defined as A = (Q, T, δ, q0, QF) with Q = Q1 × Q2,
q0 = (q0,1, q0,2), QF = QF,1 × QF,2, ((q1, q2), a, (q′1, q

′
2)) ∈ δ iff (q1, a, q′1) ∈ δ1

and (q2, a, q′2) ∈ δ2.
A partition of a set S is a collection of pairwise disjoint nonempty subsets

of S whose union is S. If π is a partition of S, then, for any element s ∈ S,
there is a unique element of π containing s, which we denote B(s, π) and call
the block of π containing s. A partition π is said to refine another partition
π′ iff every block of π′ is a union of blocks of π. If π is any partition of the
state set Q of the automaton A = (Q, T, δ, q0, QF), then the quotient automaton
π−1A = (π−1Q, T, δ′, B(q0, π), π−1QF) is given by π−1Q̂ = {B(q, π) | q ∈ Q̂ }
(for Q̂ ⊆ Q) and (B1, a, B2) ∈ δ′ iff ∃q1 ∈ B1∃q2 ∈ B2 : (q1, a, q2) ∈ δ.

2.2 Distinguishing functions

In order to avoid cumbersome case discussions, let us fix now T as the terminal
alphabet of the left-linear grammars and as the input alphabet of the finite
automata we are going to discuss.

Definition 1. Let F be some finite set. A mapping f : T ∗ → F is called a dis-
tinguishing function if f(w) = f(z) implies f(wu) = f(zu) for all u, w, z ∈ T ∗.

In the literature, we can find the terminal function [18]

Ter(x) = { a ∈ T | ∃u, v ∈ T ∗ : uav = x }
and, more generally, the k-terminal function [10]

Terk(x) = (πk(x), μk(x), σk(x)), where
μk(x) = { a ∈ T k+1 | ∃u, v ∈ T ∗ : uav = x }

Identification of Function Distinguishable Languages 119

and πk(x) [σk(x)] is the prefix [suffix] of length k of x if x /∈ T <k, and πk(x) =
σk(x) = x if x ∈ T <k. The example f(x) = σk(x) leads to the k-reversible
languages, confer [1,10]. We will discuss these and other distinguishing functions
in Section 6. Other examples of distinguishing functions in the context of even
linear languages can be found in [9].

Observe that every regular language R induces, via its Nerode equivalence
classes a distinguishing function fR, where fR(w) maps w to the equivalence class
containing w. Especially, T ∗ leads to a trivial distinguishing function fT∗ : T ∗→
{q}, and the class of fT∗ -distinguishable languages coincides with the class of 0-
reversible languages [1] over the alphabet T . In fact, many assertions, as well as
their proofs, which we state in the following for f -distinguishable automata and
languages correspond to similar assertions for 0-reversible language as exhibited
by Angluin.

In some sense, these are the only distinguishing functions, since one
can associate to every distinguishing function f a finite automaton Af =
(F, T, δf , f(λ), F) by setting δf (q, a) = f(wa), where w ∈ f−1(q) can be chosen
arbitrarily, since f is a distinguishing function.

Definition 2. Let G = (N, T, P, S) be a left-linear grammar with

P ⊆ (N \ {S})× ((N \ {S})T ∪ {λ}) ∪ {S} × (N \ {S}).

This means that rules in G are of the forms S → A, A → Ba, or A → λ for
A, B ∈ N \ {S} and a ∈ T . Let f : T ∗→F be a distinguishing function. We will
say that G is f -distinguishable if:

1. G is backward deterministic, i.e., for all A, B ∈ N , A→w and B→w imply
A = B.

2. For all A ∈ N \ {S} and for all x, y ∈ L(G, A),1 we have f(x) = f(y).
(In other words, for A ∈ N \ {S}, f(A) := f(x) for some x ∈ L(G, A) is
well-defined.)

3. For all A, B, C ∈ N \ {S} with B �= C and for all a ∈ T , if (a) S → B and
S→C are in P or if (b) A → Ba and A → Ca are in P , then f(B) �= f(C).

A language is called f -distinguishable iff it can be generated by an f -distinguish-
able left-linear grammar.

The family of f -distinguishable languages is denoted by f -DL.

Observe that the class f -DL formally fixes the alphabet of the languages
by the range of f . As we have already seen by the examples for distinguishing
functions listed above, f can oftenly defined for all alphabets. Taking this generic
point of view, for example, Ter-DL is just the class of (reversals of) terminal dis-
tinguishable languages [9,18], where the alphabet is left unspecified.

Remark 1. Our notation is adapted from the so-called terminal distinguishable
languages introduced by Radhakrishnan and Nagaraja in [18]. We use left-linear

1 We will denote by L(G, A) the language obtained by the grammar GA = (N, T, P, A).

120 Henning Fernau

grammars, while they use right-linear grammars in their definitions. This means
that, e.g., the class Ter-DL coincides with the reversals (mirror images) of the
class of terminal distinguishable languages, as exhibited in [9].2

Definition 3. Let A = (Q, T, δ, q0, QF) be a finite automaton. Let f : T ∗ → F
be a distinguishing function. A is called f -distinguishable if:

1. A is deterministic.
2. For all states q ∈ Q and all x, y ∈ T ∗ with δ∗(q0, x) = δ∗(q0, y) = q, we have

f(x) = f(y).
(In other words, for q ∈ Q, f(q) := f(x) for some x with δ∗(q0, x) = q is
well-defined.)

3. For all q1, q2 ∈ Q, q1 �= q2, with either (a) q1, q2 ∈ QF or (b) there exist
q3 ∈ Q and a ∈ T with δ(q1, a) = δ(q2, a) = q3, we have f(q1) �= f(q2).

For example, for each distinguishing function f , the associated automaton
Af is f -distinguishable.

Remark 2. Our aim is to show the identifiability of each language class f -DL,
where f is a distinguishing function. To this end, the notion of distinguishing
function was tailored, and we do not see how to provide a simpler notion to
ensure identifiability of the corresponding language classes. For example, it is
easily seen that, for each distinguishing function f : T ∗→F , any f -distinguishing
automaton has at most |F | accepting states. This conceptual simple property
is not useful to define an identifiable language class, since already the class of
regular languages having a single accepting state is not identifiable in the limit,
as this class contains all languages Lm = { anb | n < m } for m = 1, 2, . . . ,∞,
see [13].

We need a suitable notion of a canonical automaton in the following.

Definition 4. Let f : T ∗ → F be a distinguishing function and let L ⊆ T ∗ be a
regular set. Let A(L, f) be the stripped subautomaton of the product automaton
A(L)×Af , i.e., delete all states that are not accessible from the initial state or do
not lead into a final state of A(L)×Af . A(L, f) is called f -canonical automaton
of L.

Remark 3. 1. Observe that an f -canonical automaton trivially obeys the first
two restrictions of an f -distinguishing automaton.

2. Clearly, L(A(L, f)) = L. ��
2 Note that their definition of terminal distinguishable right-linear grammar does not

completely coincide with ours, but in order to maintain their results, their definition
should be changed accordingly.

Identification of Function Distinguishable Languages 121

3 Characteristic Properties

We start this section with a sequence of rather straightforward remarks which
turn out to be useful in the proof of the main theorem of this section which
is Theorem 1. There, we derive six equivalent characterizations for regular lan-
guages to be f -distinguishable. In particular, the characterization by f -canonical
automata will be needed in Section 4 in order to prove the inferrability of f -
distinguishable languages, as well as in Section 5 for proving the correctness of
the inference algorithm stated there.

In order to simplify the discussions below, we will always consider only the
case of non-empty languages.

Remark 4. Let f : T ∗→F be a distinguishing function. Consider L ⊆ T ∗. Then,
L is f -distinguishable iff L is accepted by an f -distinguishing automaton.

Proof. This easily follows via the standard proof showing the equivalence of left-
linear grammars and finite automata. ��

More precisely, the ith (i = 1, i = 2, i = 3a, i = 3b) condition for f -
distinguishable left-linear grammars “corresponds” to the ith condition for f -
distinguishable finite automata. In particular, this means that backward deter-
ministic left-linear grammars correspond to deterministic finite automata. Since
it is well-known that the state-transition function δ of a finite automaton can be
extended to a (partial) function mapping a state and a word over T into some
state, this observation immediately yields the following:

Remark 5. Let f : T ∗ → F be a distinguishing function and let G be an f -
distinguishable left-linear grammar. Then, for all nonterminals A, B, A ⇒∗ w
and B ⇒∗ w imply A = B. 3 ��

Remark 6. Let f : T ∗→F be a distinguishing function. Let A = (Q, T, δ, q0, QF)
be an f -distinguishing automaton accepting L. Then, we find: If u1v, u2v ∈ L ⊆
T ∗ and f(u1) = f(u2), then δ∗(q0, u1) = δ∗(q0, u2).

Proof. Consider the final states qi = δ∗(q0, uiv) of A for i = 1, 2. Since f(qi) =
f(uiv) and since f(u1) = f(u2) implies that f(u1v) = f(u2v), condition 3a. in
the definition of f -distinguishing automata yields q1 = q2.

By induction, and using condition 3b. in the induction step argument, one
can show that δ∗(q0, u1v

′) = δ∗(q0, u2v
′) for every prefix v′ of v. This yields the

desired claim. ��

We are now presenting the main result of this section.

Theorem 1 (Characterization theorem). The following conditions are equiv-
alent for a regular language L ⊆ T ∗ and a distinguishing function f : T ∗ → F :

1. L is f -distinguishable.
3 This condition has been called strongly backward deterministic in [22].

122 Henning Fernau

2. For all u, v, w, z ∈ T ∗ with f(w) = f(z), we have zu ∈ L ⇐⇒ zv ∈ L
whenever {wu, wv} ⊆ L.

3. For all u, v, w, z ∈ T ∗ with f(w) = f(z), we have u ∈ z−1L ⇐⇒ v ∈ z−1L
whenever u, v ∈ w−1L.

4. The f -canonical automaton of L is f -distinguishable.
5. L is accepted by an f -distinguishable automaton.
6. For all u1, u2, v ∈ T ∗ with f(u1) = f(u2), we have u−1

1 L = u−1
2 L whenever

{u1v, u2v} ⊆ L.

Proof. ‘1. → 2.:’ Assume firstly that L is generated by an f -distinguishable left-
linear grammar G = (N, T, P, S). Consider {wu, wv} ⊆ L. Due to Remark 5
there will be a unique nonterminal A that will generate w, and both S ⇒∗ Au
and S ⇒∗ Av. More specifically, let u = ar . . . a1 and let

S ⇒X0 ⇒X1a1 ⇒X2a2a1 ⇒ . . .⇒Xr−1ar−1 . . . a1 ⇒Xrar . . . a1 = Au (1)

be the first of the above-mentioned derivations. Consider now a word z ∈ T ∗ with
f(z) = f(w). By definition of distinguishing functions, we have f(zu) = f(wu).
This means that any derivation of zu via G must start with S ⇒ X0, since
otherwise the third condition (part (a)) of f -distinguishable grammars would
be violated. By repeating this argument, taking now part (b) of the third part
of the definition, we can conclude that any derivation of zu via G must start
as depicted in Equation (1). Similarly, one can argue that any derivation of zv
must start as any derivation of wv for the common suffix v. This means that
any possible derivation of zu via G leads to the nonterminal A after processing
the suffix u, and any possible derivation of zv via G leads to the nonterminal A
after processing the suffix v, as well. Hence, zu ∈ L iff A ⇒∗ z, and zv ∈ L iff
A⇒∗ z. Therefore, zu ∈ L iff zv ∈ L, as required.

‘2. ↔ 3.’ is trivial.
‘3. → 4.:’ Due to Remark 3, we have to consider only cases 3a. and 3b. of the

definition of f -distinguishable automaton. We will prove that the f -canonical
automaton A = A(L, f) = (Q, T, δ, q0, QF) of L is indeed f -distinguishable by
using two similar contradiction arguments.

Assume firstly that there exist two different final states q1, q2 of A, i.e., qi =
(w−1

i L, Xi) with w−1
1 L �= w−1

2 L and X = X1 = X2. We may assume that
X = f(w1) = f(w2). Consider two strings u, v ∈ w−1

1 L. Since we may assume
property 3., we know that either u, v ∈ w−1

2 L or u, v /∈ w−1
2 L. Since q1 and q2

are final states, u = λ ∈ w−1
1 L ∩ w−1

2 L. This means that v ∈ w−1
1 L implies

v ∈ w−1
2 L. Interchanging the roles of w1 and w2, we obtain w−1

1 L = w−1
2 L, a

contradiction.
Secondly, consider two different states q1, q2 of A such that there is a third

state q3 with δ(q1, a) = δ(q2, a) = q3. We have to treat the case that qi =
(w−1

i L, Xi) (where i = 1, 2) with w−1
1 L �= w−1

2 L and X = X1 = X2. We may
assume that X = f(w1) = f(w2). Since A is stripped by definition, there exists
a suffix s such that w1as, w2as ∈ L. Hence, as ∈ w−1

1 L∩w−1
2 L. This means that

v ∈ w−1
1 L implies v ∈ w−1

2 L. Interchanging the roles of w1 and w2, we obtain
w−1

1 L = w−1
2 L, a contradiction.

Identification of Function Distinguishable Languages 123

‘4. → 5.’ is trivial.
‘5. ↔ 1.’ see Remark 4.
‘4. → 6.’ follows immediately by using Remark 6.
‘6. → 4.’: Let the regular language L ⊆ T ∗ satisfy condition 6. Consider

A = A(L, f) = (Q, T, δ, q0, QF). Due to Remark 3, we have to verify only con-
dition 3. in the definition of f -distinguishing automata for A. If u1, u2 ∈ L with
f(u1) = f(u2), then u−1

1 L = u−1
2 L. Hence, δ∗(q0, u1) = δ∗(q0, u2), i.e., A satisfies

condition 3a.
Consider two states u−1

1 L, u−1
2 L of A(L) with f(u1) = f(u2). Assume that

(u1a)−1L = (u2a)−1L for some a ∈ T . Since A(L, f) is stripped by defini-
tion, there is some v′ ∈ T ∗ such that {u1av′, u2av′} ⊆ L. Hence, δ∗(q0, u1) =
δ∗(q0, u2), i.e., A satisfies condition 3b. ��

Observe that the characterization theorem yields new characterizations for
the special cases of both k-reversible and terminal distinguishable languages.
More precisely, the first three characterizing conditions are new in the case of k-
reversible languages, and the last three conditions are new in the case of terminal
distinguishable languages.

We end this section with providing two further lemmas which will be useful
in the following sections.

Lemma 1. Let f be a distinguishing function. Any general subautomaton of an
f -distinguishable automaton is f -distinguishable.

Proof. By definition. ��

Lemma 2. Let f be a distinguishing function. The stripped subautomaton of an
f -distinguishable automaton is isomorphic to the f -canonical automaton.

Proof. Denote by A′ = (Q′, T, δ′, q0, Q
′
F) the stripped subautomaton of some

f -distinguishable automaton A = (Q, T, δ, q0, QF). According to Lemma 1, A′ is
f -distinguishable. We have to show that, for all q1, q2 ∈ Q′ with f(q1) = f(q2),

{ v ∈ T ∗ | δ∗(q1, v) ∈ Q′
F } = { v ∈ T ∗ | δ∗(q2, v) ∈ Q′

F } ⇒ q1 = q2,

since then the mapping q �→ (w−1L(A), f(q)) for some w ∈ T ∗ with δ′∗(q0, w) = q
in A′ will supply the required isomorphism.

Since A′ is stripped, there exist strings u1, u2, v ∈ T ∗ with q1 = δ′∗(q0, u1),
q2 = δ′∗(q0, u2) and {u1v, u2v} ⊆ L(A). Since f(q1) = f(q2) implies f(u1) =
f(u2), we can apply Remark 6 in order to conclude that q1 equals q2. ��

4 Inferrability

According to a theorem due to Angluin [15, Theorem 3.26], a language class L is
inferable if any language L ∈ L has a characteristic sample, i.e., a finite subset
χ(L) ⊆ L such that L is a minimal language from L containing χ(L).

124 Henning Fernau

For the language class f -DL and some language L ∈ f -DL, consider the
corresponding f -canonical automaton A(L, f) = (Q, T, δ, q0, QF) and define

χ(L, f) = { u(q)v(q) | q ∈ Q }
∪ { u(q)av(δ(q, a)) | q ∈ Q, a ∈ T },

where u(q) and v(q) are words of minimal length with δ∗(q0, u(q)) = q and
δ∗(q, v(q)) ∈ QF . Naturally, a finite automaton for χ(L, f) may be computed by
some Turing machine which is given AL and Af as input.

Theorem 2. For each distinguishing function f and each L ∈ f -DL, χ(L, f) is
a characteristic sample of L.

Proof. Consider an arbitrary language L′ ∈ f -DL with χ(L, f) ⊆ L′. Set A =
A(L, f) = (Q, T, δ, q0, QF) and A′ = A(L′, f) = (Q′, T, δ′, q′0, Q

′
F), cf. Theorem 1.

We have to show L ⊆ L′. Therefore, we will prove:

(*) for all w ∈ Pref(L),

q = δ∗(q0, w) = (w−1L′, f(w)) = ((u(q))−1L′, f(u(q))).

(*) implies: If w ∈ L, i.e., qf = δ∗(q0, w) is final state of A, then, since u(qf) ∈
χ(L, f) ⊆ L′, (u(qf))−1L′ is an accepting state of the minimal automaton A(L′)
of L′. This means that (u(qf)−1L′, f(u(qf))) is an accepting state of A′, i.e.,
w ∈ L′, since f(w) = f(u(q)). Hence, L is a minimal f -distinguishable language
containing χ(L, f).

We prove (*) by induction over the length of the prefix w we have to consider.
If |w| = 0, then w = u(q0) = λ. Hence, (*) is trivially verified.
We assume that (*) holds for all w ∈ T <n+1, n ≥ 0. We discuss the case where
w ∈ T n, a ∈ T and wa ∈ Pref(L). Since w ∈ Pref(L), the induction hypothe-
sis yields (w−1L′, f(q)) = ((u(q))−1L′, f(q)), where q = δ∗(q0, w) and f(w) =
f(q) = f(u(q)). Therefore, (wa)−1L′ = (u(q)a)−1L′ and f(wa) = f(u(q)a), since
f is a distinguishing function. Consider q′ = δ(q, a) = δ∗(q0, wa).

Since {u(q)av(q′), u(q′)v(q′)} ⊆ χ(L, f) ⊆ L′ and f(u(q)a) = f(u(q′)) =
f(wa), δ′∗(q′0, u(q)a) = δ′∗(q′0, u(q′)) due to Remark 6 and, hence, we can con-
clude that (u(q′))−1L′ = (u(q)a)−1L′. The induction of (*) is finished. ��

5 Inference algorithm

We sketch an algorithm which receives an input sample set I+ = {w1, . . . , wM}
(a finite subset of the language L ∈ f -DL to be identified) and finds a minimal
language L′ ∈ f -DL which contains I+. In order to specify that algorithm more
precisely, we need the following notions.

The prefix tree acceptor PTA(I+) = (Q, T, δ, q0, QF) of a finite sample set
I+ = {w1, . . . , wM} ⊂ T ∗ is a deterministic finite automaton which is defined as
follows: Q = Pref(I+), q0 = λ, QF = I+ and δ(v, a) = va for va ∈ Pref(I+).

Identification of Function Distinguishable Languages 125

A simple merging state inference algorithm f-Ident for f -DL now starts with
the automaton A0 which is the stripped subautomaton of PTA(I+) × Af

4 and
merges two arbitrarily chosen states q and q′ which cause a conflict to the first or
the third of the requirements for f -distinguishing automata. (One can show that
the second requirement won’t be violated ever when starting the merging process
with A0 which trivially satisfies that condition.) This yields an automaton A1.
Again, choose two conflicting states p, p′ and merge them to obtain an automaton
A2 and so forth, until one comes to an automaton At which is f -distinguishable.
In this way, we get a chain of automata A0, A1, . . . , At. Speaking more formally,
each automaton Ai in this chain can be interpreted as a quotient automaton of
A0 by the partition of the state set of A0 induced by the corresponding merging
operation. Observe that each Ai is stripped, since A0 is stripped.

Completely analogous to [1, Lemma 1], one can prove:

Lemma 3. Consider a distinguishing function f and some L ∈ f -DL. Let I+ ⊆
L ⊆ T ∗ be a finite sample. Let π be the partition of states of A0 (the stripped
subautomaton of PTA(I+) × Af) given by: (q1, f(q1)), (q2, f(q2)) belong to the
same block iff q−1

1 L = q−1
2 L and f(q1) = f(q2).5 Then, the quotient automaton

π−1A0 is isomorphic to a subautomaton of A(L, f). ��

Theorem 3. Let f be a distinguishing function. Consider a chain of automata
A0, A1, . . . , At obtained by applying the sketched algorithm f-Ident on input
sample I+, where A0 is the stripped subautomaton of PTA(I+)×Af . Then, we
have:

1. L(A0) ⊆ L(A1) ⊆ · · · ⊆ L(At).
2. At is f -distinguishable and stripped.
3. The partition πt of the state set of A0 corresponding to At is the finest

partition π of the state set of A0 such that the quotient automaton π−1A0 is
f -distinguishable.

Proof. 1. is clear, since f-Ident is a merging states algorithm.
2. follows almost by definition.
3. can be shown by induction, proving that each πi corresponding to Ai refines π.
Since this proof is analogous to [1, Lemma 25], we omit it; see also [6, Propriété
1.1]. ��

Theorem 4. In the notations of the previous theorem, L(At) is a minimal f -
distinguishable language containing I+.

Proof. The previous theorem states that L(At) ∈ f -DL and I+ = L(A0) ⊆
L(At). Consider now an arbitrary language L containing I+. We consider the
quotient automaton π−1A0 defined in Lemma 3. This Lemma shows that

L(π−1A0) ⊆ L = L(A(L, f)).

4 Of course, this automaton is equivalent to PTA(I+).
5 Note that states of PTA(I+) are words over T .

126 Henning Fernau

By Lemma 1, π−1A0 is f -distinguishable, because A(L, f) is f -distinguishable
due to Theorem 1. Theorem 3 yields that πt refines π, so that

L(At) = L(π−1
t A0) ⊆ L(π−1A0) = L. ��

Theorem 5. If L ∈ f -DL is enumerated as input to the algorithm f-Ident, it
converges to the f -canonical automaton A(L, f).

Proof. At some point N of the enumeration process, the characteristic sample
χ(L, f) will have been given to f-Ident. By combining Theorems 2 and 4, for
all n ≥ N , and all automata An output by f-Ident, we have L(An) = L. The
argument of Theorem 4 shows that each An (with n ≥ N) is isomorphic to a
subautomaton of A(L, f) generating L = L(A(L, f)). Since each An is stripped,
it must be isomorphic to A(L, f) for n ≥ N . ��

We refrain from giving details of particular cases of f-Ident, since good
implementations of f-Ident will depend on the choice of the distinguishing
function f . We refer to [1,10,18] for several specific algorithms, including their
time analysis. We only remark that the performance of the general algorithm
f-Ident sketched above depends on the size of Af (since the characteristic sam-
ple χ(L, f) we defined above depends on this size) and is in this sense “scalable”,
since “larger” Af permit larger language families to be identified. More precisely:

Proposition 1. Let f and g be distinguishing functions. If Af is a homomorphic
image of Ag, then f -DL ⊆ g-DL.

Proof. In order to show the inclusion, we can restrict our argument to the f - (g)-
canonical automata. Let L ∈ f -DL. Consider A(L, f). Recall that A(L, f) is the
stripped version of the product automaton A(L)×Af , where also L(A(L)×Af) =
L. Now, it is easy to extend the assumed automata homomorphism mapping
Af onto Ag to a homomorphism mapping A(L) × Af onto A(L) × Ag, i.e.,
L = L(A(L)×Ag) ∈ g-DL. ��

We will discuss special cases below.

Remark 7. As regards the time complexity, let us mention briefly that the
f-Ident algorithm can be implemented to run in time O(α(|F |n)|F |n), where
α is the inverse Ackermann function and n is the total length of all words in I+

from language L, when L is the language presented to the learner for f -DL.

Proof. This observation follows from the fact that f-Ident can be implemented
similarly to the algorithm for 0-reversible languages exhibited by Angluin [1].
Moreover, her time analysis carries over to our situation. ��

Observe that this leads to an O((α(|T |kn)|T |kn) algorithm for k-reversible
languages, even if we output the deterministic minimal automaton as canonical
object (instead of A(L, f) as would be done by our algorithm), since A(L) can be
obtained by A(L, f) by computationally simple projection. On the other hand,

Identification of Function Distinguishable Languages 127

Angluin [1] presented an O(kn3) algorithm for the inference of k-reversible lan-
guages. When k is small compared to n (as it would be in realistic applications,
where k could be considered even as a fixed parameter), our algorithm would
turn out to be superior compared with Angluin’s. Recall that this feature is
prominent in so-called fixed-parameter algorithms, see [3,4,16].

We mention that f-Ident can be easily converted into an incremental algo-
rithm, as sketched in the case of reversible languages in [1].

6 Special cases

Already in Section 2.2, we gave several examples of distinguishing functions,
which, due to the results in the preceding sections, lead to identifiable language
classes. We will discuss these and other distinguishing functions and the corre-
sponding classes here.

In [10], we claimed the inferrability of the k-terminal distinguishable lan-
guages without proof. This fact follows from our general results together with
the following lemma.

Lemma 4. For all k ∈ N, Terk is a distinguishing function.

Proof. Consider three strings u, w, z ∈ T ∗ with Terk(w) = Terk(z). It is clear
that πk(w) = πk(z) implies πk(wu) = πk(zu) and that σk(w) = σk(z) implies
σk(wu) = σk(zu). Now, if μk(w) = μk(z) and σk(w) = σk(z), then consider
some word x ∈ μk(wu). If x ∈ μk(w), then clearly x ∈ μk(z) ⊆ μk(zu). If
x ∈ μk(u), then trivially x ∈ μk(zu). The only remaining case is x = x1x2,
x1 �= λ and x2 �= λ, where x1 is a suffix of w and x2 is a prefix of u. Hence,
x1 is also a suffix of πk(w), i.e., x1 is also a suffix of z. Therefore, x ∈ μk(zu).
This yields μk(wu) ⊆ μk(zu). Interchanging the roles of w and z, we obtain
μk(wu) = μk(zu) as desired. ��

This leads to an O((α(|T |2k2|T |kn)|T |2k2|T |kn) algorithm for k-terminal dis-
tinguishable languages, where n is the total length of all words in a positive
sample I+.

We can also supply a proof of the following theorem stated in [10] in this
place:

Theorem 6 (Hierarchy theorem). ∀k ≥ 0 : Terk-DL ⊂ Terk+1-DL.

Proof. As indicated in [10], {ak, ak+1} is in Terk+1-DL but not in Terk-DL. We
like to apply Proposition 1 in order to prove the inclusion. To this end, we
have to show how to map states of ATerk+1 , which are of the form (x, Y, z) with
x, z ∈ T <k+2 and Y ⊆ 2T k+2

, into states of ATerk
. This can be done by

(x, Y, z) �→ (πk(x), (
⋃

y∈Y

μk(y)) ∪ μk(x) ∪ μk(z), σk(z)).

The reader may verify that this mapping is indeed a homomorphism. ��

128 Henning Fernau

Since every k-testable language (in the strict sense) [12] is easily seen to be
generatable by a general subautomaton of the Terk-distinguishable automaton
ATerk

, it follows that every k-testable language is in Terk-DL due to Lemma 1.
Ruiz and Garćıa discussed another family of language classes which they

called k-piecewise testable languages [21] and showed that each member of this
family is identifiable. In the following, we show how these ideas can be adapted
in order to create identifiable language classes within our setting.

Given x, y ∈ T ∗, we say that x = a1a2 . . . an, with ai ∈ T , i = 1, . . . , n, is a
sparse subword of y iff y ∈ T ∗{a1}T ∗{a2}T ∗ . . . T ∗{an}T ∗. We will write x|y in
this case. ·|· is also called division (ordering). Let Δk(w) = {x ∈ T <k | x|w}.

Without proof, we state:

Lemma 5. For all k ∈ N, Δk is a distinguishing function. ��

Observe in this place that w �→ {x ∈ T k | x|w} is not a distinguishing
function in general.

Completely analogous to the hierarchy theorem shown for Terk-DL, one can
prove:

Theorem 7 (Hierarchy theorem). ∀k ≥ 0 : Δk-DL ⊂ Δk+1-DL. ��

Another related distinguishing function is

w �→ (pik(w), {x ∈ T <k | x|w}, σk(w)).

Finally, Ruiz, España and Garćıa [20] discussed a generalization of k-testable
languages, where they allowed to count the multiplicities of (forbidden) subwords
defining the so-called threshold testable languages. This counting feature can be
incorporated both in Terk, as well as in Δk in order to obtain other possibly
interesting classes of distinguishing functions. For reasons of space, we only dis-
cuss how to generalize Δk and leave all the details to the reader. Let #(x, y) be
the number of positions at which x occurs as sparse subword of y. Then define,
for every k, 	 ∈ N:

Δk,�(w) = {(x, #(x, w)) | x ∈ T <k, #(x, w) < 	}.

Again, we state without proof.

Lemma 6. For all k, 	 ∈ N, Δk,� is a distinguishing function. ��

This section might have convinced the reader that there are indeed a number
of interesting language classes which are shown to be identifiable by using our
setting.

7 Discussion

We have proposed a large collection of families of languages, each of which is
identifiable in the limit from positive samples, hence extending previous works.

Identification of Function Distinguishable Languages 129

As the main technical contribution of the paper, we see the introduction of new
canonical objects, namely the automata A(L, f). This also simplifies correctness
proofs of inference algorithms for k-reversible languages, k > 0, to some extent.
It seems to be interesting to study these canonical automata also in the search-
space framework of Dupont and Miclet [5,7,6].

We feel that deterministic methods (such as the one proposed in this paper)
are quite important for practical applications, since they could be understood
more precisely than mere heuristics, so that one can prove certain properties
about the algorithms. Moreover, the approach of this paper allows one to make
the bias (which each identification algorithm necessarily has) explicit and trans-
parent to the user: The bias consists in (1) the restriction to regular languages
and (2) the choice of a particular distinguishing function f .

We will provide a publicly accessible prototype learning algorithm for (each
of the families) f -DL in the future. A user can then firstly look for an appro-
priate f by making learning experiments with typical languages he expects to
be representative for the languages in his particular application. After this “bias
training phase”, the user may then use the such-chosen learning algorithm (or
better, an improved implementation for the specific choice of f) for his actual
application.

If the application suggests that the languages which are to be inferred are
non-regular, methods such as those suggested in [17] can be transferred. This is
done most easily by using the concept of control languages as undertaken in [8,9]
or [23, Section 4] or by using the related concept of permutations , see [11].

Acknowledgments: We gratefully acknowledge discussions with J. Alber and
J. M. Sempere. Moreover, the comments of the unknown referees were very
helpful for improving the paper.

References

1. D. Angluin. Inference of reversible languages. Journal of the Association for
Computing Machinery, 29(3):741–765, 1982. 116, 117, 119, 125, 126, 127

2. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87–106, 1987. 116, 117

3. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999. 127
4. R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A frame-

work for systematically confronting computational intractability. In Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future,
volume 49 of AMS-DIMACS, pages 49–99. AMS Press, 1999. 127

5. P. Dupont. Incremental regular inference. In L. Miclet and C. de la Higuera, edi-
tors, Proceedings of the Third International Colloquium on Grammatical Inference
(ICGI-96): Learning Syntax from Sentences, volume 1147 of LNCS/LNAI, pages
222–237. Springer, 1996. 129

6. P. Dupont and L. Miclet. Inférence grammaticale régulière: fondements théoriques
et principaux algorithmes. Technical Report RR-3449, INRIA, 1998. 125, 129

7. P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular infer-
ence? In R. C. Carrasco and J. Oncina, editors, Proceedings of the Second Inter-
national Colloquium on Grammatical Inference (ICGI-94): Grammatical Inference
and Applications, volume 862 of LNCS/LNAI, pages 25–37. Springer, 1994. 129

130 Henning Fernau

8. H. Fernau. Learning of terminal distinguishable languages. Technical Report
WSI–99–23, Universität Tübingen (Germany), Wilhelm-Schickard-Institut für In-
formatik, 1999. Short version published in the proceedings of AMAI 2000, see
http://rutcor.rutgers.edu/~amai/AcceptedCont.htm. 116, 129, 130

9. H. Fernau. Identifying terminal distinguishable languages. Submitted revised
version of [8]. 119, 120, 129

10. H. Fernau. k-gram extensions of terminal distinguishable languages. In Proc.
International Conference on Pattern Recognition. IEEE/IAPR, 2000. To appear.
116, 118, 119, 126, 127

11. H. Fernau and J. M. Sempere. Permutations and control sets for learning non-
regular language families. In Proc. International Conference on Grammatical In-
ference. Springer, 2000. To appear. 129

12. P. Garćıa and E. Vidal. Inference of k-testable languages in the strict sense and ap-
plications to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:920–925, 1990. 128

13. E. M. Gold. Language identification in the limit. Information and Control (now
Information and Computation), 10:447–474, 1967. 116, 120

14. J. Gregor. Data-driven inductive inference of finite-state automata. International
Journal of Pattern Recognition and Artificial Intelligence, 8(1):305–322, 1994. 117

15. S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems That Learn. MIT Press,
2nd edition, 1999. 123

16. R. Niedermeier. Some prospects for efficient fixed parameter algorithms (invited
paper). In B. Rovan, editor, SOFSEM’98, volume 1521 of LNCS, pages 168–185.
Springer, 1998. 127

17. V. Radhakrishnan. Grammatical Inference from Positive Data: An Effective Inte-
grated Approach. PhD thesis, Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay (India), 1987. 116, 117, 129

18. V. Radhakrishnan and G. Nagaraja. Inference of regular grammars via skeletons.
IEEE Transactions on Systems, Man and Cybernetics, 17(6):982–992, 1987. 116,
117, 118, 119, 126

19. P. Rossmanith. Learning from random text. In O. Watanabe and T. Yokomori, ed-
itors, Algorithmic Learning Theory (ALT’99), volume 1720 of LNCS/LNAI, pages
132–144. Springer, 1999. 116

20. J. Ruiz, S. España and P. Garćıa. Locally threshold testable languages in strict
sense: application to the inference problem In V. Honavar and G. Slutski, edi-
tors, Proceedings of the Fourth International Colloquium on Grammatical Inference
(ICGI-98), volume 1433 of LNCS/LNAI, pages 150–161. Springer, 1998. 128

21. J. Ruiz and P. Garćıa. Learning k-piecewise testable languages from positive data.
In L. Miclet and C. de la Higuera, editors, Proceedings of the Third International
Colloquium on Grammatical Inference (ICGI-96): Learning Syntax from Sentences,
volume 1147 of LNCS/LNAI, pages 203–210. Springer, 1996. 128

22. J. M. Sempere and G. Nagaraja. Learning a subclass of linear languages from pos-
itive structural information. In V. Honavar and G. Slutski, editors, Proceedings of
the Fourth International Colloquium on Grammatical Inference (ICGI-98), volume
1433 of LNCS/LNAI, pages 162–174. Springer, 1998. 121

23. Y. Takada. A hierarchy of language families learnable by regular language learning.
Information and Computation, 123:138–145, 1995. 129

24. L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–
1142, 1984. 116

25. R. Wiehagen. Identification of formal languages. In Mathematical Foundations of
Computer Science (MFCS’77), volume 53 of LNCS, pages 571–579. Springer, 1977.
116

� ���������	
�� �
��
����
��� ��	��

���� ������	

������ ������	�
� ��
�	����� ����
��

�
�������� �� ���
�� ��� ���� ���������

���������	�
����	��	

��������� ��� �������� ���� �� ������ � ����
�
� ��������	 ������

�� ��� ��� ���� �� �
����
	�
� !� ����� ��� ��������	 !����
" #���

����
��� ��� ����
 �$�	���� ���� %��� ��
���

���� �
� ��� �����
�� %�

� ���������� ������%����
" &�
��' ���%�%������� ���
��(�����
 �
 ��� ��	��

�� �
 ����������� ���� ��� �������
� ���� ����
���")
 ���� ����� !� �
���*

���� �
 �$���
����
 �� ���%�%������� ���
��(�����
 �
 ��� ��	�� %���� �

+����,� ������" ��� �������� �����
��� �
���������� � ������� �� ����
�
�

��������
� �
�����
�-
���� ���� �������� �$�	����'
���� �
����
��
���

��
������ �$�	����' �
�
���� ���� !��� %��� �������� �
�
������� �$*

�	����" ���� ������ � ������ ����
�.�� ��� �������
� ��� �/������
��� ��

� ����
�� !��
 ����
�
� ���� �� �����
�� %� � ������%����
 �
� �� �����*

%��
����" �
 ����	�� ��� %��
 	��� �� ���� � �����	�
��� �����������

���������
 �� ��� �*���������" �� ���� �
�' !� ���� ���!
 ���� � ����
��

���
� ��� �*��������� �������������� ����
� �
 ��� ��	�� �
� (
��� ����� ��

��
�����' ���
 !��

���� �� �����
� �
 ��� ����
�
� �$�	����" ���� ������

�� �
�������
�' %������ !��� �
���� ����' ����� �� ��� �$��������
 ����

��� ����
�� !��� �
���� � ������� ����������" ��� ����� �� ���� ������ ��

�$��
��� �� ���! ���� � ���������� �
(
��� ����� �� ��
����� ��
 ���� %�

�������������� ����
� �
 ��� ��	��" ��� ����������
 ��.����� ��� ����������

����� �� %� ��������"

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 1 31 - 1 41 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

� �������	�
��

��� ���� �� �	
����
 ��
����� �	������ ��
 ��
	��	 �
�
 ��
����
�� ����� ��
��� ��
�� �� �������� ��
� �
� �� ��
	��� ��	 ��
����� �� ��� ��������
���� ��
��� ����� �	
����	�� �� 	���	�����
 ��� �	
����
 ��
����� �� �������� ���� ��
��
���� �� ����	��� 	���	��� ��� ��
�� �� �������� ��
� �
� �� ���������� ������	�
��
��
����

 ����	������� �� ��� ����
��� ��
��� �	������
 ��� �������� ��
��
���� �� ��� ��
	��	
���	���
 �� ���� ����	�������� ��� ��
�� �� �������� ��
� �
�
�� ��
	�� �� �������� !"#� $���� ��� ����	������ �� ����� ��
�����
 ��
	���

������ ������ 	�%��� ��� ����	������ �� ����� �� ������ ��� ��
	��	 �� ���
�	
��� &� ����� ������ ��
	��	� �� ���	
�� �� ���
��� ��
� ���� ����
�� �����

�� �	
����
 ��
����� �����
	�
���	��� �� ���� ����	�������� ���� �	������

 ��	��
 �����
���� ��	 �	��
�������� ��������
���� �� ��� ������ ���	������ ��
'
�	� (�)#� ���	� �	
����
 ��
�����
	� �������� ������ '
�	�*�
��	�
���
��
����
� ���	
���
 ����� �� ��� �	
����
 ��
������
������ ���� ��������
��
��

���� ��
�����
	� �	������ �� ��� ��
	��	� &��	�
�� ���
��	�
�� �
��� ��
���� �
��	 ����
� �	
��� �� ����	���� ��
� ��
���� ���� �� �������� �	 ��

�����
����
���	
��+�� ��� ���� �� �	
����
 ��
�����
���� ��
 ��
	��	� ��	������

�	��
�������� ��������
���� 	������ �� ������
��
 �
	
�	 �
	���� �� ��
	���
 �����

������ ��� �����
���� �	����� ���� ��
���	
�� ��
���� �����
�� ��� ���������
�� �	��
�������� ��������
���� �� �	������� �� ������� "�

��� � ���	����� �
� ����
��� ��	
� ,'- ������� ����� ���� ������ ��
	��
�	�� �������� ����� �
�
 ���	� ��� �����	 �� ��������
�� ��

���� �	
����
 ���

�����
	� ����
�� ����������� �	�� ��� ������� �	������ !!� !.#� ��� ���	���
��� ������ ���� /
��� 	����
���� ���
���������� 	�

	���
 ��� �	
����
 ��
��
����� &� ���� ��
�
 ��
	��	 ����� ������� ��� � ���	����� ���� �����
����
���
��
	� �� ��� �����0

�
�� ����� ��
�� �� ���������
��
�
 	���	����� ������� ��
���� �� ���������

1� ���	���
 ����� ��
�� �� �������� �� �	���
��� ��
	�
��� �	�� �������� ���� �
�

�� ��� ��������
���� �� ��� ����� ������
 2#� ������ �� ��
��� ��
	�
��� �� ���
�����
���� ��������
���� �� ��� ����� ������
� &�
� ����� ��	 	����� �	�� ����

�	���
� �� ��� �	������ �� ����� �� ��� �
�
� �
���
 �	������� ���� 	������ ��
�����	� ���������� ����	 ����� ��� 	����� �
� �� �������� ��
� ������� ��
�� ��
��������� ��� �	��� ������3��� ��	 ��� ������� �
��� ����� ���	������ ��� ������
�� �������� ���������� ��
���� ������ �� ��
� �� ��� ����� �
��� ����� 	������
	�
�	������� �� ������� 4�

5������ 6 ����
��� ��� ��
���� �������� ��
���� ����� �
� �� ����� �� ��
��������� &� ��
��� ������� �������� ����	� ��	������ �� ������� 7�

� ���
�

�
��
	 �����
�	��
��
� ��� �
�
�

-	��
�������� ��������
���� �� ��� ����� ������� ��������
���� �� ��� ����� ��
	���
���
 ��� ��
���	 ��
� �	������
�� ��� ��
����� �� ��� ��
	��	 ����
 ��
���	

�
� ����� � � ������ ���

� ���

1 32 Eri c M c C re at h

���� ���� � ����	�
����� ��
	����� ����
��� �� ��� ���	��	� ��� �	���	��� ��
������� �� ��		��
�������� ����	�� 	����	��� ���� ����
	�
�
����� � ��� ���	��	
������� � ��		��� ��
������� ���
�� ������� ���� ������

��� �
� ��� �������� �
��� ��� ��
� �
	�
�
����� �����	� ���	 � � �����
�� �� � ��

��� �	�� �� �� !� �" ��� ��#���$ �� ���
�� �	����� ��#�$� %�
���� ������ � ��
� � ������
�� ���� &����� ���� ���
�	� �� �� �	� �����
���
��� �
� � ����� �� �����
��� ���
	�
�
����� ����	 �� � �����
� �� ������ �#�$�
�� ��#�$ '

�
���

��#�$�
��� �		�	 �	 ��(�	����
������ ��� �����
�� �� ��� �� ���� 	��
��� �� ���

	�
�
����� �����	� �� �� ������ �� �		�	#��� ��$ ' �#�����$�)� ����� ����� ��
�������� � ��
������� ��� ��
������� ���� ����� ��
� ��		��� �� ��������� �����
���� ���*�	�
	�
�
����� �� ��� �������� �
��� ����	�
������ ���� �� 	������
��
�� ��� ���	��	 ���� ����	
�
	������� ���� �� �������� ���� *�	�
	�
�
������

%� ��� � ' ���+�������
� ��� ��� �� ��� ��
����� ��������� �� ��� ��������
�
��� � � %� ������� 	���	 �� ��
����� ��������� �� ����
���� ,� ����
�� ����
	 � �

� �� �� ������� �������� �� ����
���� ��� ���	��	 ���-����	�� � ��
�������
�	�� �� ������� ����� �������� �� 	� ���� ������� ����� �������� �� 	 �� ������

 �� ������� 	
"� %� ��� ./0 ������ ��� ��� �� ��� ������� ����� ����������
�	
"�	 � �

� �
 � ���
��� �
� � ��
�������� 1� ���
	����� ��	2� � �� � ���
���	
	��	��� ���

��������� �� � ��
������� �� ������� ���#�$� �� ��� �����
� ����� � 	�
	������� ,
��
������� �
��� �� � �������� #������� �������$ �� ��
�������� %� ������ ����
��� ��
������� �
��� � ����	 �������	����� �� �����	�
��� ��� ��� ���

� ��
�����	����� �� � � %� ��	���	 ������ ���� � �� �����	��� ������
��� ����� ���	�
������ � ���
���
�� �������� � 3 � �� � �!� �� ������
����3

�#�� �$ '

�
� �� � � ���#��$�

! ����	�����

%� ��� ���� � ��
������� �
��� � �� ���
���� ���� 	��
��� �� � �����
� �����
� �� ��	 ���� � � �� ���	� �� � ��
������� � �� ��� �
��� � ���� ���� � ' ���#�$�

%� ����� � ���	��	 � ��
� � ���
���
�� ������� ���� ��
������� � ��
4

��� �	�� ./0 ���� � �

%� ���� ������ ��� ���	��	 �� �
�� �� ���
��� �#���#�$$ ��	 ��� � �� ���
��
������� �
��� � � ���� ���� ���� � ��
�
����� �� ����2��� ��
� ������
�� ��
��� ���
���
�� ���	��	� ������	� �#���#�$$ ��� ������
� ��������� ��� ���
����� ����� �� ��� �	������ �� ������ ��� ��
������� ���� ��� ��	���� 04�������

��������� � 	
�����
������ ������� � 	��
����� ��
����
���� � �� 	 ����

�� 	��� ��� ��� ��� ������� ����
 � �� �#	
"$ ' �� �
�� �� ������� �#	$�
' ��

, ����������
	����� 5/� �� ���� �� ����	��� ����� ����
�� ������ ����

	����� ���
� ��	������� �� � ��	���� �� ���� ��
������ �� ��� 2��� �� �����
������� ����� ��� ���	��	 �� ��
�
������	2��� ��� ����
�� ����� ����	����

� ���� ����� ��� �	
����
� ���
���� ��� �� ������� ������
�� �����������

1 33A Pro babilist ic I de nt if ic at io n Re sult

���� ������ �	� �
���� ��
�����
��	���	 �� �
�
�� ��

 ��
�� �� ��������
�������
�
���
 �� �	� �
���� ��
����� �� �	� ���� �
� ��
�
�
 ��
����� �	��	
	
�� �������� �
�����
� �� �	
� �	��	 ����� ������ �	� ��
����� ����� �	��� ��

� �������� ���������
� �	
� �	� ���� ��
�
�

 �������� ��� �� �
��

����

��
�� �
�������
 ��
��
� ����	
���� ������� ��� ��
��
��
� ��
���� ������
�	�� ������� �� ��
���� ������������ 	� �
�
������ ���� ��� �����
� �	�
���
�

��
���� �
 �	� ����� ��
��
���� �� ����� �	� ����� ��
���� �
 �	� �������� ��
�!
����

� ��������
��
��� �� ��� �	�
��
���� ��
������ "
 ���� �
��� �� # ���
	������� �� �� ������ ��
���� �	��� �
�
������ �� �� ��$���
� �
 ���� �
���� %�
�����
� �� # �� # & �	� ������� ���� ��
��
��
���� ���� ��
���� ������ 	�
�
�
����� � � �'�������� ��

 ��
��� �	��	 �������
�� �	��	 �����
�� ����
�� ��������

�
��
���� �
 �	� �����
�� ��
��
��� �� ����������� ����� ��

�

�
��

�� ���
� ��������� 	� �(�	 �����
� �
 �	� ��
��� � �� ��
���� �)�*� %�
���
�

 ��
��� �� �
� �����
 �
����� �� ����
���
�� +�� ��
����� �	� ��
���
�
� �������
�
�� ��
����� �
 �	� ��
���� ���� �� ��
��
����� 	�
�� �� ����
����� ��
�
�
� ���� �
��
��
���� ��
������ �� �	�� �	� ����	
���� ��
�����
��
������� ���

� ��
���� �	�� �����
� �	� ������ ���
 �
����� �� ����
���
�� �� �
�

��� ��
��
 ����
������ ��
���� ���� �'��������

�
����� � �� ����	
���!
�
��� ��
��
��� �� ���	
 ��
����� �� �	� ����	
���� ��
�
�
� ������ �� �	��
 ���

� � � �'�������� �	� ������ ���� ��
��� ���� ���

 ��
��� ��
��
��� ��

�
����	
���� ��������

 	�
������	� ��� �����������)������* ���,�
� �������� "
 �
�	 ����� ��

�	� �
�
 ���� �	�
��� ��
���� �
 �	� ��
���� ���� �� ��
��
���� 	� ��
��� �
�� ���� �� �������
� �� �	�
��� ��
���� ���� �� �������� ��
��
����� "� �	� ��
���
������� �	
� �	�
��� ��
���� ���� �� ��������� �	� �������
� ������� �� ����-

��
��� ���
 �� ������ �	��� �	� ����
������ �� �	� ���
 ����
� �� ./�
��0 �� ��

� .
���0 �� 1���2 �� �	� ���
 ����� �� ./�
��0 �	�

� �
��

�� �� �

�����
�������� ���� � ���
� ��

� ������
�
 �������� ��
����� �� �	� ���
 �� .
���0
�	�

� �
��

�� �� �

����� �������� ���� � ���
� �	� �����������
 ��� �	���-

���)	* #

�
��)	*
�)�* �� 	 � ��

& ��	�������

� �����
� ������� �� ���� �� �	� ��
��� ������� �	
� �	�
��� ��
���� ���� ��

��
����� 	��
������	� ��
��
���
 ���� �	��	 ������� �	� ��
���� �� �	��� �	�
���
 �� �
�	 ��
���� �
 �	� ���� �
��	�� �	� ���
 �� �	� ��������
��
� �����
�
�
 �

� �	� �
�
������ ���� ��� �������
� �	� ������ ��
���� �
�������� �
��
�	� ��
���� �����

��
�� �
����
�� �	� ����
������ ��
���� ���� � ��� �
�	 ��
���� ��
��
���
�� ������������ 	���
�� ��� �������� ����
������ ��
�����

 ��
���� �
�

	
��� ���	���� ����� 	� �(�	 �����
� �� �	� ��
���� ���� ���� 	
�� ����
������
��
���� �� �� �)�* # '��� ��	������ �� ���� 	
�� ����
������ ��
���� �� �	�

�)�* # ����

1 34 Eri c M c C re at h

�� ���� ��� ��	
�� � �����
���� ��� ���� ��	
��� �� �� �	������ ������ ��	�
�� ���� � ���� ��	
��� ��� �� �� �������� ���

������ ��� �

�
������� � � � ����	

�
����� �! � � ����

" �! � � #��$

%��������������� !�� ��� ��	
���� ����� ���� � #���

������ ��� �

�
������� � � � ����	

�
� ���� �! � � #���

" �! � � ���$

&� �� � 	�� � 	�� 	�� 	�� ����	������
�	�'��� ��
 �� �� ���	����!���	�� ��
���� ��	� �� 	�� �� 	�� ����	������
�	�'��� �� � $

#��� ����� � 	�� ����� � $ (����
�	�'��� 	�� '��� �� ��)�� ���
����	������
�	�'�� ��������

�������
������� � �� ��� �*)��� � � +��

� �� �����

� �� ��� �*)��� �����	��� !��
 ��� ���)� ���� �! +��
� �$ #��� ��	� !�� �����

���)� ��� �� � �
 � �
� �� �
,���-	 ����� � � ���� ��� � � � � ��� �� �	��

��������
�������

������������ �
�
����� ����� ������ �����

����� ��� �� �

�
������ ��� �! � � ����

������ ��� �! � � #��$

.� ��!�� ��� ��	��� ��������� ���	�
 ���
�	�������
 �� &�	
 	�� /'����
��
, - ��
�	�������
 ��� ������� �� 0���������� ,1- !�� !'����� ��!��
	���� ��
�	*
�'�� ������$

2���� /3#	�
��
�� �������� 	 4������ �	� �!
�������� ��5����� !��
� �!

��	����� �	�	$.� ��� ������� 	 ���� �!
�

��
����� !�� ��	����� �	�	 	��
���� ��� ����� 	�� ���
�	��6	����� �! /3#	�
��
��$

����� ����� 	���
��� ��
�	���� 7! �� ��� �� � �� � " 	�� ��� � � ������������� � � � �
��� ��	����� �	�	 ���� �� ����� !��� 	�� ��������$ (�� �������'���� �! ���� ��	��*
��� �	�	 ���� ��4�
� 	 ���
	��6�� ������� �! ��� ����	�
� ��	
� �������'�����
����� ���
���� �'����� ��� �	����
��
��� �	�� ����	������ 6��� �! 	���	����
�� 	 ����$ (��� �� ������
	� �� ��� 	��'
����� 	��'� ��� ��	����� �	�	 '���
�� 8���	��	 	�� ��
� , +- ��� ������ ��	� ��	�����
	� �� ��	��� �� ���
��
�� !��
 ���� �������� 	�� ���	���� �	�	
	� 	��� �� ���
�	���
	��� ��	���
�� ��� ��
�� !��
 ���� �������� �	�	$ (��� ���'�� 	��'
�� �� �� 	������*

	����
�
�'�	���$ (��� �� 	��� ��
��	� �� ���
���� '��� �� &���'�� ,+-
���� ���
��������� (9(39*������)
	����$ &���'�� 	����� 	 �'�� �� �
���
���
���� ������� �� �� �� �	�� �! ��� ����� �� !	
����	��
�������� 	 ���� !��
��� �
��� �	��'	��$

������ ����	�����
�� �����

�� ��
�	���� :	����� ,;� <-
�	���)
	���� ����� ���
���
	��'
�� ��	� ����	�
�� 	��
����� 	

������ �� ��
� �������'���� 	�� ����

����
��� �	������ 	

������ �� ��� �	����
��
���$ &!��� ���� 	 ��
�� ����
����	������ � 4��� ���
�	�� �	��� !��
 �������� �� ���	���� �� !��
 ���	���� ��

1 35A Pro babilist ic I de nt if ic at io n Re sult

��������� �	�
���

������ ����� �� �	� �
������ ������ �	�� �
�
��� ����
����
�� ������� ���� �	�
� ��
	 ������� �� ����������� ��� 	�� �	� ���������
����
��������

���������� ��� �

�����
����

��� ���� ��� �� � � ��� � � � ��

������ �� � � ��� � � �� ��

������ �� � � �� � � � ��

��� ���� ��� �� � � �� � � �� ��

 �� ��� �� ��� 	�� �	�� ����
�������
�� �� �������� �� ��
 �
�����
!� "�
��� ���
� � �
��������� �����
� ���
 ����� ���� ��
	 �	�� ��
	 �������
�� �	� ��#���
� �� ����������� ��� �� $���% ���	 �
��������� � ��� $ ��%
���	 �
��������� ���� "� ������ �� �
�
�� �
���
�� �� ��
	 � ����
�������
	��
 ��� ��
	 ������� �� �	� ������� ���� �
���
�� �� &' ��������� ���� ��

����������� ��� 	��� �	� ��������� ����
��������

� ���� ��� �

�����
����

��
� (���
���������� ��� �� � � ��� � � � ��

�
������ �� � � ��� � � �� ��

��� ��
������ �� � � �� � � � ��

��� ���
� (���
������ �������� ��� �� � � �� � � �� ��

 ��� ��� � � ����(��)������
� �
�

	�
�	��
	�
�� � ���
� �
�

��	�
���	
	�
�� �

�	�� �	� ����
������� ��
 ��
	 ������� �� �	� ������� ���� ����
���� ��
&' ��������� ���� �� ������
�� �� ������� *� �������� �	��
 �
��������� �����
��

���
 �
� ���� ���� �� ������
��� +��
�� �� �	����� �
����� ��
 ���
	����

���
���� ���	 &' �������� ��
�

����������� �	�� �	�
����� ��
 ,��
�-�

����� �� �
������ �����
����� ����� 	�
� ��
�
���
��� ��� ����
��� ����
���� ,��
���� ���	 ���	 ��������

��� �������� �������� �� �	� ���� �� './������0
����� �	�
� �	� ���
�����
�� #������� 	���
����
���
�
��� �� ���	�
 $���% �
 $ ��%� 1������ 2)3 �	��

������
��� './������0
����� �� � �
����������
 ������� ������� �	�� ��
	
������� �� ����������� �� �	� ���� ��� �	� �
��������� �� �� ������� ��/
���
��� �� ����� �� � ����
������� �
�� �	�
���� �� �	� ���
����� �	�� �����
�� �	� ��������� ����
������� ���
 �	� ���������

� ���� ��� �

�����
����

����� �� � � ��� � � � ��

4 �� � � ��� � � �� ��

4 �� � � �� � � � ��

����� �� � � �� � � �� ��

*� �	� �
�
�� 	�� �� ��0��� �� �	� �
������ ������ �	�
� � � ���� ���

� �
� � 4� �	�� &'

��
�������

����� �	� ���� ����
������� ���
 ��
	 �� �	�

����
���� �������� �� �	� �����
� ����� ��� 	
�
 � �
� ��� �
�
� ���������� �
������ �
 �� �������� �
 ��� �
�
� ������
���� 	
�� ����� �� 	
� � �
 ����� �
 ������
 �
�
� ����������

1 36 Eri c M c C re at h

�� ������	
 ��

��
 �� �����
����
��� ��������
 ��
�� �� �������� � ����
��
�����

� �
������ �� ����

�������
� ��
��� ���� ��
� ��� ��

��
 ���� �����
��

���
��� �������� � ���� ��
�����

� �
������ �� ����
�������� ���� �� ��� ����

�������

��������� � �� �
��
�������� ��������
���� �� ��� ������ �� �
��� �� ��� ����
������ 	���� �� !
�
�"� ������ #$� %&�

��������� � 	
���
�������� ��������
���� �� ��� ������� ����� �� ������	�

�
�	� � ��� �
�
�������� ������� ��
��� �� � ������� � �� ���� �
 ��������

��� 	����
� 	
�	�
�� � ��
	�����	���� �� ��� ������ ���� ���
�	� �
 � ��

������

�
�	� �� �� ���
��� ��

	
� ����
��� ���
�
����� �� ���� ���

	�� ��� � �� ���������������

�
� � �

�

��������� � � � ������������� �� � �

�
� ��

'��� ������	 �
� ��� �������� �
���
�� ��
�
�� ������ ��
 ��
�� ��
� ��
�����
����
��� ��

�
��� �� ��� ����� ��
��� �����
����
��� ��

�
��� �� ��� �����
����
������ �� ��� �
�� ���������� ��
���

!
�
� #$& ����� ��
�
�� ��
�� �� �������� ��
� �
�

���
������ �����

���
��� �� ���������� �
� �� �����
����
��� ��������� �� ��� ������� '���
������
���� ��������
�� ��	
���� ��
�����

� �
������� �� ��� ��

��

���
���	 �� ���
����
�������� '���
����� �� ���� �������� �� !
�
� �� ������� ����� �� ��� �

����	
��
������ ���� ��� ��
���(
�������
��)��*���	"� �
��
������ ���+�
���� #,&�
���� �� ��� �
���� �� !
�
��

�
��� ����

� �� ���
������ 	���� �� ���� �
��
�

� ���������	
�� �
��
����
��� ��
�
�� �������	
��

!�� � �� ��� ���
� �����
 �� ��
����� �
������� �� ��� ��

��
� �� � - �. ��
���
� � �� ��� �����
 �� �������� ��
�����
�� � �� ��� �����
 �� ��	
����
��
������ !�� ����

�������
	���

�� ��� ��
���� ���� 	� '�� ��

��
 � � 	����

�����
� ��+����� 	#�& ������� ��� ���������� �/	#�&0�
'�� �
��
 �� �
�����
���� �� ��
������ ��� ��	� �� ��
������
�� ��� �
���
�

���� �� ��������
�� ��	
���� ��
����� �� ��������� �� ��� ������ �� �

���
�
1���� �����
������ �� ��� ��
���� �
�����
����

� ��� �
���
� ��
 ��� ��

���	

�	�
����� ��
����� ��
� ��� ��

��
 �� �
������ ����
 �������� �� ��������
��
����� /�� �

���
���� �0
 �������� �� ��	
���� ��
����� /�� �

���
���� �0�

'��
�	�
���� ������ ��
2� �� �������	 ��� ���������� ���� ��� �
������

� �
��� � 	���� ��� ��

��� ��
������ 3� 	���

� ���
� �
� ��
 ��� �� ��������
��� ���� �+�
� � �
����� '� ���� ���
�	�
����
���
�
���	 ������� ����� ���
� ���	 �
���
�
����
	�	� ��	 ����� ���
�� �������� �
	� � �	����
�	�� 	���	����	

�	� ��
����
	�	�
� �
	 ���	 �� � ��
���� �	����
�	 �	� ��
����
	�	��
� �
	 �	��	�
� �
�	��	� �� ��
����������� �	�� �� �	����	 �
	��� ���
 ��� ��	
���

�
���� 	�� ����	������ �� ��� ���	
�������
���
� �
	 �����
�� ������������� �	���	� �
	 �	� �� � � � ���� � �� ���� � ��������
� ����� � �� �	 ����!��"�� ��

�
���

	��������
!

�
!����� ��

�
���

��	�
������
!

�
!�#"��� ���
�

$
	�	 �"�� ���� ��� #"�� ��	 �	��	��
�	�� �
	 ���	 ���
�
�	� ���	 �	���
�	�� ���

1 37A Pro babilist ic I de nt if ic at io n Re sult

���������� 	��� ���
���
�
 ��
��� �� ������� �� ����
���
�
 ��
�� ���������
�� ��
���
 ���� ��� ��������
 	��� ����� ����� �������������� �� ��� ��
��� ��������
���� �� ��� ������������� ������� ������ ���� ���� ��� ��������
 �� ��
�������
�� �� ����
��� �����
�� � ����� ������� ������� �� ��� �������� ������� ����������
����� ��� ����������� ���� !�

����� �
�� ��	
�
	 �
����
��� ����
 ��
� ����� ����������
 	����������� ��
� ��
� �������� � ���
��������� ��
 ��
�� ����
 �� � �
����
����
� �
��
��
 � � ���� �� �
�����
� ���� ��

�����
 �
�� ��
��
 ����
 �����
�
� � � ��� ! ���� ���� �� � � ��	 �� � ��

"����� �
� �
����
��� 	�

	 �� �����	
�#���������
�#	!!
������ 	

��������	
� "��������� �
����������� ����� ��� � ���������

�

 � ����� ������� �����

������	

 ��� � �� ��� ��	��
��
���

��� ���
�� � �� ��� ��������	� ���
�

��	
� 	�
���
��� ��� �� ���� ��� ��� ��	�� ��������� �� ����� ��	��� �
����	��

�
���	��� ���� ���
����	
�

� 	����	��� � 	� ���
	�	� �	�� �����
� �� � ����

�����
�� ��� ����	��� �� ����
�������

��� ��� ���

� � ��� ��� �� � � ���

�� � ��

������ #�� �� ����� ��
�������� 	� ���� ����$� ������� ��� ����� ����� � ����
�������
�� �� �������
 �� ��� ������� ������ ��!� %�� ����� ��
����� ��� �
���������� ���� ��������� ��������� ��� ������ �������� 	��� �Æ� � ����������
���� �� �� ������ %�� ����� �� �&��' � �&�Æ' �� ����������
 ���� ����� �����(
� ���
 ��������� � ��
 �� � ���� �� ���
�
 ��������� ���� ���������
��� �� �
�������� ���
���� ��
 � ��
 �� � ���� �� ���
�
 ��������� ���� ���������
��� ��
� �������� ���
���� %�� �������
 ����� ��� ���� �� ����� ���
�
 ��������� ��
���	� �� �� ���������)���
��� ���� ��� ��
 �� ����� ���
�
 �������� �� �� �����
���� ��� �������
 ��
� 	� 	��� ���� �&��' � �&�Æ' �� ��
� ������ ���� 	��� ���
���
 �������� �� ���������)������� *��+
���,� ���-������� 	� ��
���� � ����

�� ��� ������� �� ���� ����
������ %��� ����
 �� ���� ���
 �� ���.������� 	���
��� /����01������� ��

� �� ���	 ���� ��� ����� �� �������� ��� �� ��������������
�
������
 �� ��� ��
��� ��

����
 �
�����
� �� �������
� $�
�
 ��
 ������� �
��
��
 ��
������
	 ����� �
����
���
	�

� ��
 �������� �����	
�#�! 	
���
� ��
 �
����
��� 	 � � ���� ���� #�	� � � �
�	�! 	 � 	�% $�
�
 � �� � ����� ��	
���� �� ��

1 38 Eri c M c C re at h

��� � �����	
��� 	�
�	��
��
���
����

��� ������	
��� �
������� ��� ����� ������ �� �� ������� ������� ����� ��
���
��� �����������
��� ������� �� ����� ������� �������� �� ��� ������ ������� ���
�������� ���� ���� ������ ���� �� ������� ��� �� �������� ��� ����� �� ��������
�� ��������� ���������� �� ��� ������ �� ������� ���� ������	 � ����������� ��
������ �� ��� ���� ��� ���������� 	�� �� ��������� ���

��
�	�	�� � ��������� �	�� �����
� �� �
��
����� ��� � � � � �� ��� �

�� � ��	��
�� � �

������� �
���� � � ����� � ��� �� ���� �� �� � ������ ����
���
��� �� ��	��
� � �� ����� ������ �� � � �	� �� � � ���� ���� ��� ��� � 	 ���

�� �����

�����!�
 ���!��"" �� # � �����!�
 ���!��"" � ���!�"�

��
�	�	�� � ����������� � �

������� �
��� � �� ���� �� �� � ������ �� � ��

� ������ ���� ���
��� �� ��	��
�� 	� ��� �	���	�� �
��� �� �	� ���!��" ��� ���
�� � ��

������� �� ���
 �� �	
 ��	��
� ����� �	� � �� �	
 �

������� �
��� �����

�� ���
���� ���
� ��� � � $#
 %" �� ��� 	����
��������� ������	� � �� � ������
����� �!�" � �

��
��� � � %� ����� ������ �	 ��������� ���� �������������
 ���	�����

 �	 ��� ����� ���� ���
��� �� � ���	 ����
��� ���
������� �
 ����
�������

���

�	
 ������ � �	� �	
 ��
 � �	� ��
 ��

 ����� &�	������
� ���� ����'� ������� ��� ����� ����� ��� $() ��� ��� ���� ��������
���� ����� �
����� ��� �������� ������ ��� ������� ���� ����� ���� *�������	 %�

+���� ��� � ������ ����������
� 	�� ����� ,��-����� ���������� �� ���
� ����� �� ��� ����������� �� �������� �� ��������� ����������� ���� ����� ��
���� ���� �� ���.�������
��� ��� /���� 0������� ��		� �� ���
 ���� ��� �����
�� �������� ��� �� �������������� ��������� �� ��� ��	��� ��

� ������� 	
����
 	������

��� ������������ ������� ��������� �� ��� �������� �
� �������� ��� �����������
������� ��� 	���� ������������ ����� �� ��� ���� ��� � ���������� ��������� ��
�������� �� ���� ���� ��� �������� �� 	��� ��������� ������� �������� ��� �������
��������� ���������� ��� ��������� �� ��� ��	�� !�� ��� ����������� +��� $1) �����"�
���� ��� ��� ��������� �� ��� +��� ������� �� ����� �� �������� �� ��
� �������� �
����� ���� �� ��� ��������� �� ��� ��	�� ���	 �������� ���� ���� �� +���2� ��������
��� �� ��������� �� ��� ���������� ������� ���	 ���� �������� ���� ���� �� ���
�������� �� ������

��� ������ �� 3����������� % ��� 4
��� �� ���
��� ���� ��� ����������
������ �� �������� ��� �!�
����
��� ������� �� � �������� ����� ������������ ���
���� �������� ������	 4� ��� ������ �� �������� �� $() ��� ����� �������

1 39A Pro babilist ic I de nt if ic at io n Re sult

����������� 	
 ��� � � ���� ��� ��� � � � � � ��� �� ���� ���� ��� ��� ���� ��� ��� � � ���
��� ��	��
� ���

 ��	
�
��	� �� ��� ��� �	���
��
��
 �� � �������� ���� � �

�����
������� ����	���� �	 ��� ����� ���� ��

��� �� ���

��� �	
��

� ���
�
���� �
 ��� �
�
���
�
�
������ �
 ��
� �����
�����
 �� �
�������
�
 ����� ����
���� ��� ���
���� � ��
������
 �������
�
 ����������

�� ��� ���
���
 ��� ���

�
 �� �������
 ���� ���
�
�
 �� ��� �����
�� ���
��
�� ����
��
 ���
��
 �� ��� ��
� ��� �� � � � � �� ���
 ���

 �
 �
�!
�� �� ��� ���

���� �� !�
�����
������� ���
��!�� �� ��� ����� �� ��� �
�"���
 �
���
�����
����� ��� ���

 ���� ��
� !�
�����
������� ���
��!�� �� ��� �������� #���"�
 ��
������� ���

�
��� �
 �� ��� !� �
�"�� �
��� �
�
�
����� �������
�

���� ��� �
��$�
��� ��
�����
���� ��
�
�!����� ����� ��
�
 � ������
 !���� �� ��� �	
��

�

�
�
������ ��� ����� � ��
� ��Æ���� ������� �� ���
��

����������� �
 ��� ��� �	
��	��

��� � �� �� ��� ��� �	
��	��

��� ��
������

���	 ��%�& � ��

����
����� 	� �
 ��� 	��������	� ��	
��	�� ��� � � ���� ��� ��� � � � � �

��� �� ���� ��� ��� ��� �� ��� ��� �� �� '�� � � ��� ��� ��	��
� ���

 ��	
�
��	� �� � �	�

� �������� ���� ���� �� � � � � ���� � �� �

�����
������� ����	���� �	 ��� ����� ����

��

��� �� ��

� ����������

���
�
���
 ��
�����
��� ������(������ �� ��� ����� �� ���
 ����
 �
� �
�������
��
)� ���� ���
���� �
 ������
 ���
�
�
���
 ����� !� �*������ �� ���� ���� ��	
����� ������*��� �

��
� ���
 ����� ��"�
��� ���� �� ��� ��� �*������ ���!�

�� �
������ �*�����
 �
�"���� �� ��� ���
��
 !���
� ��� ��

��� �������
�
 �

�������� +� ���
 ��
� !��� ��� ��
�
�!����� �� �������
 �
�
����� �� ��� ���
��

��� ��� �
��
 �
�!�!����� �
�� !����� �
�������)�����
 ���� ���
���� �
 ����
�
� ��� ���
����
�
���
 �� ��

��
� �������
�

����
�

	
�����
���������

+ �����)
�� ,��
�� ��
 ��
 ��
���� ��� ��"���� + ��
� ����� ��� ��
 ��
 ��	
���
������� �� �*���� ��� ������� (����
�
���� + ����� ��
� ���� �� ����� ���

�"����

 ��
 ����
 ������� �������
�

����������

�� �� ����� �	�
� ��
����
	� ������� ���	�
 ���
�	�������
� �
��������� �����	�
�����

�� �� �	���
	� ���	�
��
	� ��	������ ���� ��� ����
 �!��"���� #� �	
 �� $�"���
#$%��&� '	
(���
�� ��)���� ��**�

� +
	 � ��� ���� "����	���
�	 ���� ,� ��
��� ,� �	� ��� ��� ��
� ������ ����� ���
"��
�
(� �	�� ����� ����

�� +�� -��"��
�
�	 .���� �� /�0�

1 40 Eri c M c C re at h

�� �� �������	�
�� ����������	 �
� �
����
� �
�� ���
� � �
�	� �����

�� �� �� �
��� �������
 ��
���� ���
� �� ��
 ��!��� �
��������
 �
� ��
����� �"#��$%

�$�� ��&$�

�� �� '

(����� �)
������ ��
+������
	 ,
) 	�!	
, *
���
�)���
! -�)��*�
	�

����
�� �� ��
 ��
����
 ����������� ����������
� �.#��%�"� ��&��

&� �� ����� /� 0	�
)	
�� �� 1
�
)� ��� 2� ���)!�� �	��
�� ���� �
��
� �
 �
�������

���
 �� �
��
�
� ��
��	� �34 �)
		� 	

��
����
�
����
�� �����

$� �� ���)�� �
��
�
� ���� ���� ���� �
� ��� ��/ ��
	�	� 5��
 6��-
)	���� ��.$�

.� �� ���)�� �
��
�
� ���� ���� �
� �� ����� 7��8
) 2 ��
!� ��*��	�
)	� �
	�
��

�2� ��..�

�� �� � 9)
���� �
������
 �
 !���� "��
� ����� ���� #���	 ����
�
� $%��&�
� �
�

!�%
� $%��&�
 �
� ��'
�� ��/ ��
	�	� 4�
 6��-
)	���
, :
8 �
��� ���
	� �����

�"� �� � 9)
��� ��� 2� ���)!�� 3�� 8��� �
�	
 ��� �;
�
;�!<�
 	�=
2 ���
	���

�<<)
� �� 3� !���

�� �
�
�
����
�� ���
� ��
�
�

�
 �
 ����(���� �
�
����

�
�

-
��!
 >� <��
	 ���"%����� ���$�

��� �� � 9)
��� ��� 2� ���)!�� ��!
# 2 	�	�
! ,
) �
�)����)
����
�	� 3� ��
)��

�
�
�
����
�� *��+���& �
 ����������� �
��
�
� ��
��	� �<)���
)?@
)���� 0 �
*
)

���.�

�>� A� �
������ ��� �� ��!�� ��)����!	 �� !
�	�)
 ��

)
�� �
�)���� ��� �� ��,
)?

!��� �
�)����� 6�<�*��	�
� /)�,��

1 41A Pro babilist ic I de nt if ic at io n Re sult

A New Framework for Discovering Knowledge

from Two-Dimensional Structured Data Using
Layout Formal Graph System

Tomoyuki Uchida1, Yuko Itokawa1, Takayoshi Shoudai2, Tetsuhiro Miyahara1,
and Yasuaki Nakamura1

1 Faculty of Information Sciences, Hiroshima City University,
Hiroshima 731-3194, Japan

{uchida@cs,yuko@toc.cs,miyahara@its,nakamura@cs}.hiroshima-cu.ac.jp
2 Department of Informatics, Kyushu University 39, Kasuga 816-8580, Japan

shoudai@i.kyushu-u.ac.jp

Abstract. We present a new framework for discovering knowledge from
two-dimensional structured data by using Inductive Logic Programming.
Two-dimensional graph structured data such as image or map data are
widely used for representing relations and distances between various ob-
jects. First, we define a layout term graph suited for representing two-
dimensional graph structured data. A layout term graph is a pattern con-
sisting of variables and two-dimensional graph structures. Moreover, we
propose Layout Formal Graph System (LFGS) as a new logic program-
ming system having a layout term graph as a term. LFGS directly deals
with graphs having positional relations just like first order terms. Sec-
ond, we show that LFGS is more powerful than Layout Graph Grammar,
which is a generating system consisting of a context-free graph grammar
and positional relations. This indicates that LFGS has the richness and
advantage of representing knowledge about two-dimensional structured
data.
Finally, we design a knowledge discovery system, which uses LFGS as
a knowledge representation language and refutably inductive inference
as a learning method. In order to give a theoretical foundation of our
knowledge discovery system, we give the set of weakly reducing LFGS
programs which is a sufficiently large hypothesis space of LFGS programs
and show that the hypothesis space is refutably inferable from complete
data.

1 Introduction

The purpose of this paper is to give a framework for discovering knowledge from
two-dimensional graph structured data. A graph is one of the most common
abstract structures and is widely used for representing relations between various
data such as image, map, molecular, CAD or network data. In graph struc-
tures, a vertex represents an object, and an edge represents a relation between
objects but not a distance between them. In representing two-dimensional struc-
tured data such as image or map data, it is needed to represent two-dimensional

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 141–155, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

142 Tomoyuki Uchida et al.

� � �� �

�� � � � �� � � �
�

	
� �

�
� �

	
� �

�� � � � �� � � �
�

� �
	

� �
� 	

� �

�� � � � �� � � �
�

� �
	

� �� 	

� �

��
����� �������
 �������� �������

��������� ��
���� ! "!
���
#� $%� "� &��& �� ����

� �

� �

�

� �

�

�

� �

�

'()*+,-./.

Fig. 1. A knowledge discovery system using LFGS

graph structured data with distances between objects and positional relations.
As methods of expressing knowledge for various data, logic program, decision di-
agram using ID3 algorithm [12], and association rules are known. Especially, for
graph structured data, Muggleton et al. produced the Inductive Logic Program-
ming system PROGOL and applied it to biochemical and chemical data [3,10].
For graph structured data, we have already designed and implemented a knowl-
edge discovery system KD-FGS [8,9]. The KD-FGS system uses Formal Graph
System (FGS) as a knowledge representation language and refutably inductive
inference as a learning method.

In [16], we presented a term graph as a hypergraph whose hyperedges are
regarded as variables. By adding positional relations with distances between
objects to the notion of a term graph, we define a layout term graph for repre-

Discovering Knowledge from 2-D Structured Data using LFGS 143

senting two-dimensional structured data. By using layout term graphs, we have
the advantage of solving the isomorphism problem of layout term graphs in poly-
nomial time. And we propose Layout Formal Graph System (LFGS) as a new
logic programming system which directly deals with layout term graphs instead
of first order terms. By comparing LFGS with Layout Graph Grammar (LGG)
[1], which is a generating system for two-dimensional graph structured data, we
show that the sets of graphs generated by LGG are also definable by LFGS.
This indicates that interesting sets of graphs such as the trees, the binary trees,
the series parallel graphs, the partial k-trees for a positive fixed integer k, the
maximal outerplanar graphs, and the complete graphs, are definable by LFGS.

From the above theoretical foundations, we can design a knowledge discovery
system as follows. By employing a matching algorithm for layout term graphs,
we can design various knowledge discovery systems, for example, a system based
on Minimum Description Length principle [13] such as Subdue System [2] and
a system whose hypotheses are association rules or decision diagrams over a
layout term graph. In this paper, we design a knowledge discovery system based
on Inductive Logic Programming in Fig. 1. Our system uses LFGS as a knowledge
representation language and refutably inductive inference as a learning method.
As inputs, our discovery system receives positive and negative examples about
two-dimensional structured data. As an output, the system produces an LFGS
program as a rule describing the given examples. In order to give a theoretical
foundation of our system, we give the set of weakly reducing LFGS programs
which is a sufficiently large hypothesis space of LFGS programs and show that
the hypothesis space is refutably inferable from complete data.

This paper is organized as follows. In Section 2, we define a layout term
graph as a pattern consisting of variables and positional relations in order to
represent two-dimensional structured data. And we introduce LFGS as a new
knowledge representation language suited for two-dimensional graph structured
data. In Section 3, we show that LFGS is more powerful than LGG. In Section
4, we design our knowledge discovery system by giving a framework of refutably
inductive inference of LFGS programs.

2 LFGS as a New Logic Programming System for
Two-Dimensional Structured Data

In this section, we define a layout term graph, which is a new knowledge repre-
sentation for two-dimensional structured data. And we present Layout Formal
Graph System (LFGS), which is a logic programming system having a layout
term graph as a term. This section gives a theoretical foundation for knowledge
discovery systems using a layout term graph as a pattern and other systems
using LFGS as a knowledge representation language.

Let Σ and Λ be finite alphabets and X an alphabet. An element in Σ,
Λ ∪ {x, y} and X is called a vertex label, an edge label, and a variable label,
respectively. Assume that (Σ ∪ Λ ∪ {x, y}) ∩ X = ∅ and Λ ∩ {x, y} = ∅. Let
N be the set of non-negative integers and N+ = N − {0}. For a list or a set

144 Tomoyuki Uchida et al.

S, the number of elements in S is denoted by |S|. Let V , E and H be a finite
set, a subset of V × Λ × V , and a multi-set of lists of distinct vertices in V ,
respectively. An element in V , E and H is called a vertex, a directed edge (or
simply an edge), and a variable (or a hyperedge), respectively. For a variable h,
we denote the set of all elements in h by V (h) and V (H) denotes

⋃
h∈H V (h). We

assume two functions, called rank and perm, for the variable label set X . The
first function rank :X → N+ assigns a positive integer for each variable label.
A positive integer rank(x) is called the rank of x. The second function perm
assigns a permutation over rank(x) elements for each variable label x ∈ X .

That is, for a variable label x ∈ X , perm(x) =
(

1 2 · · · i · · · k
ξ(1) ξ(2) . . . ξ(i) · · · ξ(k)

)
is an operation which change the i-th element to the ξ(i)-th element for each
1 ≤ i ≤ k, where k = rank(x) and ξ : {1, . . . , k} → {1, . . . , k} is a permutation.
Applying a permutation perm(x) to a variable h = (v1, v2, . . . , vk) is defined as
follows. h · perm(x) = (v1, v2, . . . , vk) · perm(x) = (vξ−1(1), vξ−1(2), . . . , vξ−1(k)).
Each variable h ∈ H is labeled with a variable label in X whose rank is |h|.
Let F be a subset of (V ∪ H) × {x,y} × (V ∪ H), whose elements are called
layout edges. For E and F , we allow multiple edges and multiple layout edges
but disallow self-loops. Let dist : F → N be a function which gives a distance
between two vertices, a vertex and a variable, or two variables. A layout edge
(u, x, v) (resp. (u, y, v)) means that the vertex u must be placed in the left
(resp. lower) side of the vertex v so that the distance between u and v is more
than dist((u, x, v)) in the x-direction (resp. dist((u, y, v)) in the y-direction).
Later we define a substitution which replaces variables with graphs. In order to
specify the positions of the resulting graphs after applying a substitution, we give
relations between a vertex and a variable, or two variables, in advance, by dist
and layout edges. A layout edge labeled with an edge label s ∈ {x,y} is called
an s-edge. For an edge label s ∈ {x,y}, an s-path is a sequence of layout edges
(u1, s, u2), (u2, s, u3), . . . , (un, s, un+1) such that ui �= uj for 1 ≤ i < j ≤ n + 1,
where each ui (1 ≤ i ≤ n + 1) is a vertex or a variable. If u1 = un+1, the s-path
is called an s-cycle.

Definition 1. A 4-tuple g = (V, E, H, F) is called a layout term graph if it
satisfies the following conditions.

(1) For any two distinct vertices in V , there exist an x-path and a y-path between
them such that the paths consist of only vertices.

(2) For any two distinct variables in H , there exist an x-edge and a y-edge
between them.

(3) For any variable h ∈ H and any vertex v ∈ V − V (h), there exist an x-path
and a y-path between h and v.

(4) For any variable h ∈ H and any vertex v ∈ V (h), there exists no layout edge
between h and v.

(5) There is no x-cycle and y-cycle in g.

Discovering Knowledge from 2-D Structured Data using LFGS 145

	

�

�

�

�

� 0

� �

1
1 �

�

�

��
1

�

�

�

�

�
x-edge

y-edge

Σ = {a}, Λ = {a}, X = {x, y}

V = {v1, v2, v3},

E = {(v1, a, v2), (v2, a, v1), (v2, a, v3), (v3, a, v2)}

H = {(v2, v3), (v1, v3)},

F = {(v2, x, v1), (v1, x, v3), (v2, y, v3), (v3, y, v1),
((v2, v3), x, (v1, v3)), ((v2, v3), y, (v1, v3)),
(v1, x, (v2, v3)), (v2, x, (v1, v3)),
((v2, v3), y, v1), (v2, y, (v1, v3))}.

Fig. 2. A layout term graph g = (V, E, H, F). A variable is represented by a box
with thin lines to its elements and its variable label is in the box. An edge is
represented by a thick line.

(6) For any variable h = (v1, . . . , vk) ∈ H whose variable label is x, there exist
an x-path from vi to vi+1 and a y-path from vξ−1(i) to vξ−1(i+1) for all

1 ≤ i ≤ k − 1, where perm(x) =
(

1 2 · · · k
ξ(1) ξ(2) · · · ξ(k)

)
.

A layout term graph g = (V, E, H, F) is ground if H = ∅. We note that a term
graph defined in [16] is regarded as a layout term graph having no layout edge.
If both (u, a, v) and (v, a, u) are in E, we treat the two edges as one undirected
edge between u and v. A vertex labeling function and a variable labeling function
of g are denoted by ϕg : V → Σ and λg : H → X , respectively.

Example 1. In Fig. 2, we give a layout term graph g = (V, E, H, F). rank(x) =

rank(y) = 2, perm(x) =
(

1 2
1 2

)
and perm(y) =

(
1 2
2 1

)
. Then, (v2, v3) ·

perm(x) = (v2, v3)
(

1 2
1 2

)
= (v2, v3) and (v1, v3)·perm(y) = (v1, v3)

(
1 2
2 1

)
= (v3, v1). dist((v2, x, v1)) = dist((v1, x, (v2, v3))) = 2,
dist((v2, x, (v1, v3))) = dist(((v2, v3), x, (v1, v3))) = 3, dist((v1, x, v3)) = 4,
dist((v2, y, v3)) = 2, dist((v3, y, v1)) = dist((v2, y, (v1, v3))) = 3,
dist(((v2, v3), y, v1)) = 4, and dist((v2, v3), y, (v1, v3)) = 5.

Let g = (V, E, H, F) be a layout term graph. From the definition of a layout
term graph, there exist an x-path which passes all vertices in V . This x-path
is called a Hamiltonian x-path. The occurrence order of vertices is shown to be
unique for all Hamiltonian x-paths. The occurrence order of a vertex v ∈ V over a
Hamiltonian x-path is denoted by Ordx

g (v) ∈ N+. Inversely, for 1 ≤ i ≤ |V |, the
i-th vertex over a Hamiltonian x-path is denoted by V erxg (i) ∈ V . Similarly, there
is a y-path which passes all vertices in V and we call this y-path a Hamiltonian y-
path. The occurrence order of vertices is shown to be unique for all Hamiltonian

146 Tomoyuki Uchida et al.

y-paths. The occurrence order of a vertex v in V over a Hamiltonian y-path
is denoted by Ord

y
g (v) ∈ N+ and the i-th vertex is denoted by V er

y
g (i) for

1 ≤ i ≤ |V |. For a layout term graph g = (V, E, H, F), F can give a layout of g.

Example 2. Let g = (V, E, H, F) be the layout term graph in Fig. 2. Sequences
of layout edges ((v2, x, v1), (v1, x, v3)) and ((v2, y, v3), (v3, y, v1)) are the Hamil-
tonian x-path and the Hamiltonian y-path of g, respectively. Ordx

g (v2) = 1,
Ordx

g (v1) = 2, Ordx
g (v3) = 3, Ord

y
g (v2) = 1, Ord

y
g (v3) = 2, and Ord

y
g (v1) = 3.

V erxg (1) = v2, V erxg (2) = v1, V erxg (3) = v3, V er
y
g (1) = v2, V er

y
g (2) = v3, and

V er
y
g (3) = v1.

In the same way as logic programming system, an atom is an expression of
the form p(g1, . . . , gn), where p is a predicate symbol with arity n and g1, . . . , gn

are layout term graphs. Let A, B1, . . . , Bm be atoms with m ≥ 0. Then a graph
rewriting rule or a rule is a clause of the form A ← B1, . . . , Bm.

Definition 2. A program of Layout Formal Graph System (an LFGS program,
for short) is a finite set of graph rewriting rules.

For example, the LFGS program ΓTTSP in Fig. 3 generates a family of two-
terminal series parallel graphs (TTSP graphs, for short) with layouts. A series-
parallel graph is a multiple directed acyclic graph obtained by recursively apply-
ing two composition rules, called a series composition rule and a parallel com-
position rule. A TTSP graph is a series parallel graph having two distinguished
vertices s and t called source and sink, respectively.

Let g = (V, E, H, F) be a layout term graph. Let Px and Py be a longest
Hamiltonian x-path and a longest Hamiltonian y-path, respectively. The mini-
mum layout edge set of g is the subset F ′ of F such that F ′ = F−⋃

s∈{x,y}{(c, s, d)
∈ F | (c, s, d) is not in P s and the total of distances between c and d over P s is
greater than or equal to dist((c, s, d))}. Layout term graphs g = (Vg, Eg, Hg, Fg)
and f = (Vf , Ef , Hf , Ff) are isomorphic, which is denoted by g � f , if there
exists a bijection π : Vg → Vf satisfying the following conditions (1)-(4). Let F ′

g

and F ′
f be the minimum layout edge set of g and f , respectively. For a variable

(u1, u2, . . . , uk) ∈ H , π((u1, u2, . . . , uk)) denotes (π(u1), π(u2), . . . , π(uk)).

(1) ϕg(v) = ϕf (π(v)) for any v ∈ Vg.
(2) (u, a, v) ∈ Eg if and only if (π(u), a, π(v)) ∈ Ef .
(3) h ∈ Hg if and only if π(h) ∈ Hf , and λg(h) = λf (π(h)).
(4) For each s ∈ {x, y}, (c, s, d) ∈ F ′

g if and only if (π(c), s, π(d)) ∈ F ′
f and

dist((c, s, d)) of g is equal to dist((π(c), s, π(d))) of f .

Theorem 1. Let g and f be layout term graphs. The problem of deciding whether
or not g and f are isomorphic is solvable in polynomial time.

Proof For layout term graphs g = (Vg, Eg, Hg, Fg) and f = (Vf , Ef , Hf , Ff),
we consider a mapping π : Vg → Vf which assigns the vertex v of f for a vertex
u of g such that Ordx

g (u) = Ordx
f (v). Since the occurrence order of any vertex

Discovering Knowledge from 2-D Structured Data using LFGS 147

⎧⎪⎪⎨⎪⎪⎩

� � �� �

�� � � � �� � � �
�

	
� �

�
� �

	
� �

�� � � � �� � � �
�

� �
	

� �
� 	

� �

�� � � � �� � � �
�

� �
	

� �

�

	

� �

�� � � � �� � � �
�

� �
	

� �� 	

� �

�� � � � �� � � �
�

� �
	

� �
�

	

� �

�� � � � �� � � �
�

	
� �

�
� �

	
� �

⎫⎪⎪⎬⎪⎪⎭
Fig. 3. An LFGS program ΓTTSP which generates a family of TTSP graphs
with layouts

of each layout term graph is unique for all Hamiltonian x-paths and |Vg | = |Vf |,
the mapping π is a bijection from Vg to Vf . For a layout term graph, we can find
a bijection π in polynomial time by using an algorithm for finding a Hamiltonian
path for a directed acyclic graph in [4]. We can easily decide whether or not π
satisfies the isomorphic conditions for g and f in polynomial time. (QED)

Let g = (V, E, H, F) be a layout term graph, σ be a list (v1, v2, . . . , vk) of k

vertices in V , x be a variable label in X with perm(x) =
(

1 2 · · · k
ξ(1) ξ(2) · · · ξ(k)

)
.

The form x := [g, σ] is called a binding of x if there are x-paths from vi to vi+1

of g and there are y-paths from vξ−1(i) to vξ−1(i+1) of g for all 1 ≤ i ≤ k − 1.
For a list S of vertices, we denote by S[m] the m-th element of S. A substitution
θ is a finite collection of bindings {x1 := [g1, σ1], . . . , xn := [gn, σn]}, where
xi’s are mutually distinct variable labels in X and each gi (1 ≤ i ≤ n) has no
variable label in {x1, . . . , xn}. In the same way as logic programming system, we
obtain a new layout term graph f , denoted by gθ, by applying a substitution

148 Tomoyuki Uchida et al.

θ = {x1 := [g1, σ1], . . . , xn := [gn, σn]} to a layout term graph g = (V, E, H, F)
in the following way. Let N = |V | and ri = rank(xi), and the number of vertices
of gi is denoted by Ni for all 1 ≤ i ≤ n.

(1) First, for all 1 ≤ i ≤ n, we replace all variables having the variable label xi

with the layout term graph gi as follows. Let h1
i , h

2
i , . . . , h

ki

i be all variables
which are labeled with the variable label xi. And let Ci be the set of all layout
edges incident to one of the variables h1

i , h
2
i , . . . , h

ki

i . Then, we attach the ki

layout term graphs g1
i , g2

i , · · · , gki

i , which are copies of gi, to g according to
the ki lists σ1

i , σ2
i , . . . , σki

i , which are the ki copies of σi in the following way.
We remove all variables h1

i , h
2
i , . . . , h

ki

i from H and all layout edges in Ci

from F , and identify the m-th element hj
i [m] of hj

i and the m-th element
σj

i [m] of σj
i for all 1 ≤ j ≤ ki and all 1 ≤ m ≤ ri. Then, the resulting graph

is denoted by f0. We assume that the vertex label of each vertex hj
i [m]

(1 ≤ m ≤ ri) is used for f0, that is, the vertex label of σj
i [m] is ignored in

f0.
(2) Next, for all i = 1, . . . , n and all j = 1, . . . , ki, a layout of f0 is updated by

adding new layout edges to f0 so that gθ satisfies the conditions in Definition
1 as follows.
(i) For all u ∈ V − V (hj

i) such that Ordx
g (u) < Ordx

g (hj
i [1]), we add a

new x-edge to f0 as follows. If (u, x, hj
i) ∈ Ci (the vertex u1 of g in

Fig. 4 is an example of u), we add (u, x, V erx
gj

i

(1)) to f0 (the layout

edge (u1, x, V erx
gj

i

(1)) is added in gθ of Fig. 4). If (hj
i , x, u) ∈ Ci and

Ordx
gj

i

(σj
i [1]) > 1, we add (V erx

gj
i

(Ordx
gj

i

(σj
i [1])− 1), x, u) to f0.

(ii) For all u ∈ V −V (hj
i) such that there exists m < ri satisfying the condi-

tion Ordx
g (hj

i [m]) < Ordx
g (u) < Ordx

g (hj
i [m+1]) and Ordx

gj
i

(σj
i [m])+1 <

Ordx
gj

i

(σj
i [m+1]), we add a new x-edge to f0 as follows. If (u, x, hj

i) ∈ Ci

(the vertex u2 of g in Fig. 4 is an example of u), we add (u, x, v) to
f0, where v is V erx

gj
i

(Ordx
gj

i

(σj
i [m]) + 1) (the vertex v of gi in Fig. 4 is

given as an example and the layout edge (u2, x, v) is added in gθ). If
(hj

i , x, u) ∈ Ci, we add (V erx
gj

i

(Ordx
gj

i

(σj
i [m + 1])− 1), x, u) to f0.

(iii) For all u ∈ V − V (hj
i) such that Ordx

g (hj
i [ri]) < Ordx

g (u), we add a new
x-edge to f0 as follows. If (u, x, hj

i) ∈ Ci and the vertex σj
i [ri] is not the

rightmost vertex in gj
i (such as u3 in Fig. 4), we add (u, x, V erx

gj
i

(Ordx
gj

i

(

σj
i [ri]) + 1)) to f0. If (hj

i , x, u) ∈ Ci (the vertex u3 of g in Fig. 4 is an
example of u), we add (w, x, u) to f0 (the layout edge (V erx

gj
i

(Ni), x, u3)

is added in gθ of Fig. 4). where w is the rightmost vertex of gj
i .

For each added layout edge e, we set dist(e) to the distance of the layout edge
between u and hj

i . For any d ∈ V ∪ (H−{h1
i , . . . , h

ki

i }) in g and any variable
h in gj

i , we add a new x-edge (d, x, h) with dist((d, x, h)) = dist((d, x, hj
i))

to f0 if (d, s, hj
i) ∈ Ci and there is not an x-path from h to d in f0. And

Discovering Knowledge from 2-D Structured Data using LFGS 149

we add a new x-edge (h, x, d) with dist((h, x, d)) = dist((hj
i , x, d)) to f0 if

(hj
i , x, d) ∈ Ci and there is not an x-path from d to h in f0. In a similar way,

we add new y-edges to f0. Then, the resulting graph f is obtained from f0.

When a layout is ignored, we note that the above operation of applying a sub-
stitution to a layout term graph is the same as that of a term graph in [16]. In
Fig. 5, we give the layout term graph gθ obtained by applying the substitution
θ = {x := [g1, (w1, w2)], y := [g2, (u1, u4)]} to the term graph g as an example.

A unifier of two layout term graphs g1 and g2 is a substitution θ such that
g1θ � g2θ. A unifier θ of g1 and g2 is a most general unifier (mgu) of g1 and g2,
if for any unifier τ of g1 and g2, there exists a substitution γ such that τ = θγ.

Lemma 1. There exists no mgu of two layout term graphs, in general.

Proof (Sketch) We can obtain this lemma by showing that two layout term
graphs g1 and g2 in Fig. 6 have no mgu. Assume that g1 and g2 have a unifier
θ = {x := [g, (u1, u2)]} and g has a variable. The leftmost vertex (the vertex u of
g in Fig. 6) in V (H) is at the k-th position in the x-path of g = (V, E, H, F). Then
the leftmost vertex (the vertex u of g1θ in Fig. 6) in V (Hg1θ) is at the (k +1)-st
position in the x-path of g1θ = (Vg1θ, Eg1θ, Hg1θ, Fg1θ). The leftmost vertex (the
vertex u of g2θ in Fig. 6) in V (Hg2θ) is at the k-th position in the x-path of
g2θ = (Vg2θ, Eg2θ, Hg2θ, Fg2θ). Since g1θ � g2θ, we have a contradiction. So any
unifier of g1 and g2 is of the form θ = {x := [g, (u1, u2)]} for a ground layout
term graph g. We can show that, for n ≥ 1, a substitution {x := [fn, (v1, v2)]}
for a ground layout term graph fn in Fig. 6 is a unifier of g1 and g2. Thus any
unifier of g1 and g2 is not an mgu of g1 and g2. (QED)

Notions of a goal, a derivation and a refutation are defined in a way similar
to those in logic programming [7], except that a unifier instead of an mgu is
used in a derivation and a refutation. Due to Lemma 1, in LFGS a derivation
is based on an enumeration of unifiers and only ground goal is considered. We
say that a ground layout term graph g is generated by an LFGS program Γ and
its predicate symbol p if there exists a refutation in Γ from the goal ← p(g).
And the set of all ground layout term graphs generated by Γ and its predicate
symbol p is said to be definable by Γ and p, and the set is denoted by GL(Γ, p).

3 LFGS and Layout Graph Grammar

In [1], Brandenburg presented Layout Graph Grammar (LGG) consisting of an
underlying context-free graph grammar and layout specifications. Its underlying
context-free graph grammar is a vertex replacement system such as Node-Label
Controlled Graph Grammar (NLCG) in [5]. LFGS is a logic programming system
obtained by extending Formal Graph System (FGS) [16] for two-dimensional
graph structured data. In [16], we gave an interesting subclass of FGS, which is
called a regular FGS. And we showed that the set of graphs L is definable by a
regular FGS program if and only if L is generated by a hyperedge replacement

150 Tomoyuki Uchida et al.

��

2%
$���

�%

	 �� � �

	 �� �
��2

%
$���"

	 �� �
��2

%
$��0 ��"

	 �� �
����"

2
%
$���

2
%
$��0 ��

	 �� �
����"

��

��

	 �� �
���� "

2
%
$��

%
�

	 �� �
��2%

$��%�"

1���
���"

	 �� �
��1���

���""

	 �� �
��2

%
$���"

1���
��� "

	 �� �
��1���

��� ""

������

���# � �

g

� 2�1�
��

� 2�1�
��$%�� 2�1�

��$� 	21�
��$
��

� 2�1�
��$� �

��
��
� 2�1�

��$� �
��� ��

� 2�1�
��$� �

��� 0
��� 2�1�
��$� �

��2���

� 2�1�
��$� 	21�

��$� ���

� �
��� �

� �
��� 0
�

� �
��2��

%
� 	21�

��$
�
� 	21�

��$� ��

� �
��
�

����#�
���"��

gi

$�

� �
�"
�

�
�
�"2 �

$
 $�

�
�
�"%

�
��	%1

��
� �	%1
��� �

�
�	%1�

���
�
�	%1�

���� ��

��� ��� � ���1�

����# �

��� ��� � ���1

�
�
�"2 0
�

gθ

Fig. 4. Updating layout edges for gθ, where g = (V, E, H, F) is a layout term
graph, θ = {· · · , xi := [gi, σi], · · ·}, N = |V |, ri = rank(xi), and the number of
vertices in gi is Ni.

Discovering Knowledge from 2-D Structured Data using LFGS 151

�
� 0 � �

���

��

�

�0

��

�

�

�

�

	

�
�

� 0

� �

�

�

�

� �

�

�
� � 0

� 0� � 0

� �� � �� � �

�

�

�

�
	

1

1

g1 g2 g gθ

Fig. 5. Ground layout term graphs g1 and g2, a layout term graph g, a substitution
θ = {x := [g1, (w1, w2)], y := [g2, (u1, u4)]} and the resulting layout term graph gθ

grammar [5]. And in [15], we showed that for an NLCG G, there exist an FGS
program Γ and its predicate symbol p such that the set of graphs generated by
G is definable by Γ and p. In this section, we show that LFGS is more powerful
than LGG w.r.t. the sets of generated graphs.

First of all, we introduce some notions of LGG. A graph g = (V, E, m) over Σ
and Λ consists of a finite set of vertices V , a vertex labeling function m : V → Σ,
and a finite set of edges E = {(u, a, w) | u, w ∈ V, u �= w and a ∈ Λ}. In the
same way as a layout term graph, let Es = {(u, s, w) | u, w ∈ V, u �= w}, and
gs = (V, Es, m) for s ∈ {x,y}. In order to simplify the discussion in comparing
LFGS with LGG, we consider g∗ = gx ∪ gy satisfying the following conditions
(1) and (2). And g∗ is called a drawing specification.

(1) gx and gy are acyclic.
(2) For every pair of vertices (u, w) with u �= w, there is a path over gx from u

to w, or conversely, And there is a path over gy from u to w, or conversely.

Let N , T and Δ be alphabets such that N ∩ T = ∅. An element of N , T
and Δ is called a nonterminal vertex label, a terminal vertex label and a terminal
edge label, respectively. A graph grammar employed in LGG is one of the vertex
replacement systems such as node-label controlled graph grammars [6] defined
as follows.

Definition 3. A graph grammar is a system GG = (N, T ∪ Δ, P, S) defined
as follows. P is a set of finitely many productions of the form p = (A, R, C),
where A is a nonterminal vertex label in N , R is a nonempty graph and C is a
connection relation consisting of tuples (B, a, u) with B ∈ N ∪ T , a ∈ Δ and u
being the vertex of R. And S is the axiom and is regarded as a vertex having
the vertex label S.

A direct derivation step g ⇒ g′ rewrites a graph g = (V, E, m) into a graph
g′ = (V ′, E′, m′) by applying a production p = (A, R, C) to a vertex w having
a nonterminal vertex label A as follows. Replace w by an isomorphic copy of

152 Tomoyuki Uchida et al.

�

�0

�

�0

g1 g2

� �� �

�

�
� 0

�

�0

�
�

�

�

fn g

�

	

	�

1

�

�

�

000 �
	

�

	

	�

1

�

�

�000

�

	

��$%�$
���2��

g1θ g2θ

Fig. 6. Layout term graphs g1 and g2 which have no mgu

R that is disjoint with g. Then establish edges between the neighbors of w
and the vertices of R as specified by C. That is, V ′ = (V − {w}) ∪ V (R),
where V (R) is the set of all vertices of R. And an edge e = (s, a, t) is in E′

if and only if e ∈ E with s �= w and w �= t or e ∈ E(R) or e is established
by a connection from C as follows, where E(R) is the set of all edges in R.
If (B, a, u) ∈ C and u ∈ V (R), then (v, a, u) is an edge of g′ if and only if
v has a nonterminal vertex label B and (v, a, w) is an edge in g. The graph
language generated by a graph grammar GG, denoted by L(GG), is the set of
all generated graphs with terminal vertex labels. That is, L(GG) = {g | S ⇒∗

g, m(w) is a terminal vertex label for every vertex w ∈ V (g)}.
Definition 4. A layout graph grammar LGG = (GG, LS) consists of a graph
grammar GG and a layout specification LS associating finitely many drawing
specifications with each production of GG.

We consider a derivation step of GG in which g′ is obtained from g by replac-
ing a vertex w of g by the graph R according to p. Then, the drawing specification
is updated as follows. In gx, the x-edges incoming to w are transferred to the
vertex of R having no incoming x-edge, and the x-edges outgoing from w are
transferred from the vertex of R having no outgoing x-edge. y-edges are treated
similarly. The language L(LGG) of a layout graph grammar LGG = (GG, LS)

Discovering Knowledge from 2-D Structured Data using LFGS 153

consists of the set of all pairs (g, DS(g)) such that g ∈ L(GG) and DS(g) is
constructed along a derivation S ⇒∗ g.

Theorem 2. Let G be an LGG. Then there is an LFGS program Γ and its
predicate symbol p such that GL(Γ, p) = L(G).

Proof (Sketch) We construct graph rewriting rules according to productions in
LGG G and according to the operation of adding new edges in a derivation step.
Then, we can obtain the LFGS program Γ from G. By simulating a derivation of
G with a refutation of Γ and conversely, we can prove L(G) = GL(Γ, p). (QED)

The interesting sets of graphs such as the trees and the binary trees, the
series parallel graphs, the partial k-trees for fixed k, the maximal outerplanar
graphs, and the complete graphs, are generated by a graph grammar which is
employed by LGG [1]. From Theorem 2, these sets are also definable by LFGS.
In [15], we showed that there exists a set of graphs L such that FGS can define L
but not generated by any NLCG. This result and Theorem 2 suggest that LFGS
is more powerful than LGG.

4 Refutably Inductive Inference of LFGS Programs

In this section, we introduce a sufficiently large hypothesis space of LFGS pro-
grams, the set of weakly reducing LFGS programs, and show that the hypothesis
space is refutably inferable from complete data. Since Mukouchi and Arikawa
[11] showed that refutably inductive inference is essential in machine discovery
from facts, this result gives a theoretical foundation of our knowledge discovery
system from two-dimensional structured data with such an LFGS program as a
hypothesis.

We give our framework of refutably inductive inference of LFGS programs
in a way based on our previous results [8,9]. In this section we assume that the
distance of any layout edge is bounded by a constant. Let g = (V, E, H, F) be
a layout term graph. Then we denote the size of g by ‖g‖ and define ‖g‖ =
|V | + |E| + |H |. For example, ‖g‖ = |V | + |E| + |H | = 3 + 4 + 2 = 9 for the
layout term graph g = (V, E, H, F) in Fig. 2. For an atom p(g1, . . . , gn), we
define ‖p(g1, . . . , gn)‖ = ‖g1‖+ · · ·+ ‖gn‖.

Definition 5. A graph rewriting rule A ← B1, . . . , Bm is said to be weakly
reducing if ‖Aθ‖ ≥ ‖Biθ‖ for any i = 1, . . . , m and any substitution θ. An
LFGS program Γ is weakly reducing if every graph rewriting rule in Γ is weakly
reducing.

For example, the LFGS program ΓTTSP in Fig. 3 is weakly reducing. The set
of all ground atoms is called the Herbrand base, denoted by HB, and is considered
as the set of all training examples. A subset I of HB is called an interpretation,
and is considered as a set of positive training examples. An LFGS program Γ is
called a correct program for an interpretation I if the least Herbrand model of
Γ , which is the set of all ground atoms proved from Γ , is equal to I. A complete

154 Tomoyuki Uchida et al.

presentation of an interpretation I is an infinite sequence (w1, t1), (w2, t2), · · · of
elements in HB×{+,−} such that {wi | ti = +, i ≥ 1} = I and {wi | ti = −, i ≥
1} = HB − I.

A refutably inductive inference algorithm is a special type of inductive infer-
ence algorithm. The algorithm receives a complete presentation as an input. If
the algorithm produces the sign “refute” and stops, we say that the algorithm
refutes the hypothesis space. A refutably inductive inference algorithm produces
hypotheses as outputs or refutes a given hypothesis space. A refutably inductive
inference algorithm is said to converge to an LFGS program Γ for a presenta-
tion, if it produces the same LFGS program Γ after some finitely many times of
hypothesis changes.

Definition 6. A refutably inductive inference algorithm is said to refutably infer
a hypothesis space H from complete data, if it satisfies the following condition.
For any interpretation I ⊆ HB and any complete presentation δ of I, (1) if there
exists a correct program in H for I then the algorithm converges to a correct
program in H for I from δ, (2) otherwise the algorithm refutes H from δ.

Theorem 3. For any n ≥ 1, the hypothesis space WR[≤n] of all weakly reduc-
ing LFGS programs with at most n graph rewriting rules has infinitely many
hypotheses. And WR[≤n] is refutably inferable from complete data.

This theorem can be shown in a way based on [11,14]. We can construct
a machine discovery system for a refutably inferable hypothesis space. Thus
Theorem 3 gives a theoretical foundation of our knowledge discovery system. By
a simple enumeration of hypotheses, the hypothesis space WR[≤n] is inferable
but not refutably inferable. If the number of graph rewriting rules is not bounded
by a constant, then this hypothesis space is not refutably inferable. In case that
the distance of a layout edge is not bounded by a constant, we need another
learning method about distances of layout edges.

5 Concluding Remarks

We have given a framework of discovering knowledge from two-dimensional graph
structured data with positional relations such as image or map data. We have
defined a layout term graph for representing two-dimensional graph structured
data. And we have proposed Layout Formal Graph System (LFGS) as a new
logic programming system which is used as a knowledge representation language.
Also we have shown that LFGS is more powerful than Layout Graph Grammar
(LGG). Finally we have designed a knowledge discovery system using LFGS for
two-dimensional graph structured data.

We have shown that the isomorphism problem for layout term graphs is
solvable in polynomial time. However, in order to develop a knowledge discovery
system, we must construct an efficient algorithm for finding a unifier of a ground
layout term graph and a layout term graph.

Discovering Knowledge from 2-D Structured Data using LFGS 155

References

1. F. J. Brandenburg. Designing graph drawings by layout graph grammars. Proc.
Graph Drawing ’94, Lecture Notes in Computer Science, Vol. 894:416–427, 1994.
143, 149, 153

2. D. J. Cook and L. B. Holder. Substructure discovery using minimum descrip-
tion length and background knowledge. Journal of Artificial Intelligence Research,
1:231–255, 1994. 143

3. P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using
the inductive logic programming system progol. Machine Learning, pages 241–270,
1998. 142

4. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979. 147

5. A. Habel and H.-J. Kreowski. May we introduce to you: hyperedge replacement.
Proceedings of the 3rd International Workshop on Graph-Grammars and Their
Application to Computer Science, LNCS 291, pages 15–26, 1987. 149, 151

6. D. Janssens and G. Rozenberg. On the structure of node-label-controlled graph
languages. Information Sciences, 20:191–216, 1980. 151

7. J. W. Lloyd. Foundations of Logic Programming, Second, Extended Edition.
Springer-Verlag, 1987. 149

8. T. Miyahara, T. Shoudai, T. Uchida, T. Kuboyama, K. Takahashi, and H. Ueda.
Discovering new knowledge from graph data using inductive logic programming.
Proc. ILP-99, Springer-Verlag, LNAI 1634, pages 222–233, 1999. 142, 153

9. T. Miyahara, T. Uchida, T. Kuboyama, T. Yamamoto, K. Takahashi, and H. Ueda.
KD-FGS: a knowledge discovery system from graph data using formal graph sys-
tem. Proc. PAKDD-99, Springer-Verlag, LNAI 1574, pages 438–442, 1999. 142,
153

10. S. Muggleton, A. Srinivasan, R.D. King, and M.J.E Sternberg. Biochemical knowl-
edge discovery using inductive logic programming. Proc. DS-98, Springer-Verlag,
LNAI 1532, pages 326–341, 1998. 142

11. Y. Mukouchi and S. Arikawa. Towards a mathematical theory of machine discovery
from facts. Theoretical Computer Science, 137:53–84, 1995. 153, 154

12. L. R. Quinlan. Induction of decision trees. Machine Learning 1, pages 81–106,
1986. 142

13. J. Rissanen. Modeling by the shortest data description. Automatica 14, pages
465–471, 1978. 143

14. T. Shinohara. Rich classes inferable from positive data: length-bounded elementary
formal systems. Information and Computation, 108:175–186, 1994. 154

15. T. Uchida, T. Miyahara, and Y. Nakamura. Formal graph systems and node-label
controlled graph grammars. Proc. 41st Inst. Syst. Control and Inf. Eng., pages
105–106, 1997. 151, 153

16. T. Uchida, T. Shoudai, and S. Miyano. Parallel algorithm for refutation tree prob-
lem on formal graph systems. IEICE Transactions on Information and Systems,
E78-D(2):99–112, 1995. 142, 145, 149

Hypotheses Finding via Residue Hypotheses with

the Resolution Principle

Akihiro Yamamoto1,2 and Bertram Fronhöfer3

1 Faculty of Technology and MemeMedia Laboratory, Hokkaido University
N 13 W 8, Kita-ku, Sapporo 060-8628 Japan

2 “Information and Human Activity”, PRESTO, JST
yamamoto@meme.hokudai.ac.jp

3 Institut für Informatik, TU München
D–80290 München

fronhoef@informatik.tu-muenchen.de

Abstract. For given logical formulae B and E such that B �|= E, hypothesis
finding means the generation of a formula H such that B ∧ H |= E. Hypoth-
esis finding constitutes a basic technique for fields of inference, like inductive
inference and knowledge discovery. It can also be considered a special case of
abduction. In this paper we define a hypothesis finding method which is a com-
bination of residue hypotheses and anti-subsumption. Residue hypotheses have
been proposed on the basis of the terminology of the Connection Method, while
in this paper we define it in the terminology of resolution. We show that hy-
pothesis finding methods previously proposed on the bases of resolution are
embedded into our new method. We also point out that computing residue hy-
potheses becomes a lot more efficient under the restrictions required by the
previous methods to be imposed on hypotheses, but that these methods miss
some hypotheses which our method can find. Finally, we show that our method
constitutes an extension of Plotkin’s relative subsumption.

1 Introduction

For given logical formulae B and E such that B �|= E, hypothesis finding means the
generation of a formula H such that B∧H |= E. The formulae B, E, and H are intended
to represent a background theory, a positive example, and a hypothesis respectively.
Hypothesis finding constitutes a basic technique for fields of inference, like inductive
inference and knowledge discovery. It can also be considered a special case of abduction.
This paper treats hypothesis finding in clausal logic.

Various methods were developed for hypothesis finding on the basis of the resolution
principle, but many of them imposed severe restrictions on the hypotheses to be gener-
ated. The abductive inference by Poole [12] and its improvement [6] require that every
hypothesis should be a conjunction of literals. Some methods developed in the area
of Inductive Logic Programming, e.g. the bottom method (or the bottom generalization
method) [16], inverse entailment [9] 1, and saturation [13], generate hypotheses which
consist of exactly one clause. As we pointed out in [19] some important hypotheses
might be failed to generate under such restrictions.
1 In previous works [15,16] by one of the authors, the bottom method was not well distin-

guished from inverse entailment.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 156–165, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Hypotheses Finding via Residue Hypotheses with Resolution Principle 157

In order to remove such restrictions and also in order to put hypothesis finding on
general grounds, we have recently proposed a new concept : residue hypotheses [4,5].
Residue hypotheses are defined on the basis of the terminology of the Connection
Method, which is a special method for theorem proving [2]. Based on the residue
hypothesis concepts we have developed several hypothesis finding methods and shown
that they are generalizations of the bottom method.

In this paper we define residue hypotheses in terminology of resolution. The def-
inition gives at least two contributions. Firstly we show that residue hypotheses are
useful in design and analysis of hypothesis finding even when we adopt the resolution
principle as its basis. The second is to give a solution to a problem which we have left
unsolved in the previous research.

Residue hypotheses were initially defined in propositional logic, and then lifted up
to first-order logic by using anti-instantiation. We have mentioned that some method
other than anti-instantiation should be employed for more flexible hypotheses, but did
not give any proposal for it. As an answer to this problem, anti-subsumption is proposed
in this paper. Subsumption is originally defined as a relation of two clauses. It can be
extended in several manners to a relation of two sets of clauses. We adopt an extension,
denoted by �, which was proposed in a learning algorithm of logic programs [1]. In
order to make our discussion general and simple, we define the residue hypothesis for
any satisfiable set S of clauses and denote it by Res(S). The main theorem shows that

S T =⇒ Res(T) � Res(S)

where is provability by resolution, set inclusion, and subsumption. Since all of the
resolution-based methods above make resolvents and subsumed clauses from B ∪ E,
where E is a negation of (skolemized) E, any hypothesis derived by them can also be
derived by the combination of residue hypotheses and the inverse of �. This shows that
anti-subsumption is appropriate for the replacement of anti-instantiation.

With the main theorem we show which type of hypotheses may be missed by
resolution-based methods but can be found by our new method. Moreover, the the-
orem shows that our hypothesis finding method defines a new relation between sets
of clauses, as an extension of Plotkin’s relative subsumption [11]. These results are
contribution to the first aim of this paper.

This paper is organized as follows: In the next section we define terminology and
notation for our discussion. In Section 3 we define residue hypotheses in the terminology
of resolution. In Section 4, we give the main result which shows how resolution proofs
affect hypothesis finding, and in Section 5 we explain the relation between the main
result and the bottom method and Poole’s method for abduction. In the last section
we give a view on the complexity of computing residue hypotheses.

2 Hypothesis Finding in Clausal Logic

We assume the readers to be familiar with first-order logic and clausal logic. When
more precise definitions are needed, we refer them to textbooks on these areas (e.g.
[2,3,8]).

Let L be a first-order language. As in the Prolog language, each variable is assumed
to start with a capital letter. For each variable X we prepare a new constant symbol

158 Akihiro Yamamoto and Bertram Fronhöfer

cX called the Skolem constant of X . We let Ls denote the language whose alphabet is
obtained by adding all the Skolem constants to the alphabet of L.

In this paper a clause is a formula of the form

C = ∀X1 . . . Xk(A1 ∨A2 ∨ . . . ∨An ∨ ¬B1 ∨ ¬B2 ∨ . . . ∨ ¬Bm)

where n ≥ 0, m ≥ 0, Ai’s and Bj ’s are all atoms, and X1, . . . , Xk are all variables
occurring in the atoms. We sometimes represent the clause C in the form of the impli-
cation

A1, A2, . . . , An ← B1, B2, . . . , Bm.

In this paper we define a clausal theory as follows:

Definition 1. A clausal theory is a finite set of clauses without any tautological clauses
which represents the conjunction of clauses contained therein. The set of all clausal
theories in L (Lc) is denoted by CT(L) (CT(Lc) resp.).

Let S be a clausal theory. We assume that no pair of clauses in S share variables. A
substitution σS replaces each variable in S with its Skolem constant. The set of ground
clauses which is an instance of some clause in S is denoted by ground(S).

Definition 2. For a ground clausal theory S = {C1, C2, . . . , Cm} where

Ci = Li,1 ∨ Li,2 ∨ . . . ∨ Li,ni for i = 1, 2, . . . , m,

we define its complement2 as the set of clauses

S = {¬L1,j1 ∨ ¬L2,j2 ∨ . . . ∨ ¬Lm,jm | 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, . . . , 1 ≤ jm ≤ nm}.

When any variable occurs in S, we define S = SσS .

Definition 3. A hypothesis finding problem (HFP , for short) in clausal logic is defined
as a pair (B, E) of satisfiable clausal theories such that B �|= E. The theory B is called
a background theory, and each clause in E is called a positive example. A solution to
the HFP (B, E) is given by any clausal theory H such that B ∪H |= E.

Because we do not consider any negative example, an example means a positive example
in this paper.

Definition 4. A fitting procedure (or a fitting, for short) F is a procedure which gen-
erates hypotheses H from a given example E with the support of a background theory
B. The set of all such hypotheses is denoted by F(E, B).

Each of the fittings we are now discussing can be represent as a main routine
consisting of two sub-procedures. The first sub-procedure enumerates highly specific
clausal theories and the second generalizes each of them. We give formal definitions.

Definition 5. A base enumerator Λ is a procedure which takes an example E and a
background theory B as its input and enumerates ground clausal theories in Ls. The
set of clausal theories enumerated in the procedure is denoted by Λ(E, B) and called
a base set .
2 Using the terminology of the Connection Method, the complement of S corresponds to the

set of negated paths in the matrix representation of S.

Hypotheses Finding via Residue Hypotheses with Resolution Principle 159

Definition 6. A generalizer Γ takes a ground clausal theory K in Ls and generates
clausal theories in L. The set of clauses generated by Γ is denoted by Γ (K).

Procedure FITΛ,Γ (E, B)

1. Choose non-deterministically a ground clausal theory K from Λ(E, B).
2. Return non-deterministically clausal theories in Γ (K).

If either of the sets Λ(E, B) and Γ (K) is infinite, we must use some dovetailing method
in order to enumerate all elements in these sets. In our discussion we need not mind
about how the dovetailing is implemented.

3 Residue Hypotheses

In order to make our discussion simple, we put S = B ∪ E and slightly modify some
definitions in our previous work [4,5].

Definition 7. For an unsatisfiable and ground clausal theory S, the residue hypothesis
for S is defined as a clausal theory which is obtained by deleting all tautological clauses
from S. The residue hypothesis is denoted by Res(S)3.

We can obtain Res(S) from a ground clausal theory S by deleting all clauses containing
pairs of complementary literals.

Hypotheses finding with residue hypotheses is based on Herbrand’s theorem, which
is described in textbooks on Automated Theorem Proving (e.g. [2,3,8])4.

Theorem 1 (Herbrand). A finite set S of clauses is unsatisfiable if and only if there
is a finite and unsatisfiable subset of ground(S).

For our aim we use the following corollary.

Corollary 1. Let S be a clausal theory and T be a ground clausal theory such that T ⊆
ground(S). Then S ∪ H is unsatisfiable for any clausal theory H such that Res(T) ⊆
ground(H).

In [4,5] we used this corollary directly. That is, we considered an enumerator GT and
a generalizer AI which satisfy the following specifications:

GT (S) = {K ∈ CT(Lc) | K = Res(T) for some T such that T ⊆ ground(S) },
AI(K) = {H ∈ CT(L) | Hθ = K for some substitution θ }.

In the next example we apply the fitting FITGT,AI to a hypothesis finding problem.

3 Each of clause in Res(S) corresponds to a non-complementary path in the Connection
Method terminology. This definition via non-complementary paths was used in [4,5].

4 Theorem 1 is called “Herbrand’s Theorem, Version II” in Chang and Lee’s textbook [3],
which has two versions of “Herbrand’s Theorem”.

160 Akihiro Yamamoto and Bertram Fronhöfer

Example 1. Let us consider the background theory

B1 = {pet(X) ← dog(X), small(X)}

and the positive example

E1 = {pet(c) ←}.

Let S1 = B1 ∪ E1. Then

ground(S1) =
{

pet(c) ← dog(c), small(c)
← pet(c)

}
,

and we put T1 = ground(S1). The residue hypothesis for T1 is

Res(T1) =
{

dog(c), pet(c) ←
small(c), pet(c) ←

}
.

By applying anti-instantiation to Res(T1), we get the hypothesis

H1 =
{

dog(Y), pet(Y) ←
small(Z), pet(Z) ←

}
in FITGT,AI(E1, B1).

We define a weaker form of anti-instantiation using the subsumption relation be-
tween clauses.

Definition 8. A clause C subsumes a clause D, written as C " D, if every literal in
Cθ occurs in D.

If a clausal theory S is unsatisfiable and a clause D ∈ S is subsumed by C, then the
clausal theory which is obtained by replacing D with C is also unsatisfiable. We extend
subsumption to a relation between two sets of clauses in the following way:

Definition 9. Let H and K be clauses. We define H � K iff, for every clause D in
K, there is a clause C in H such that C " D.

Now we revise the fitting FITGT,AI by replacing the generalizer AI with a general-
izer AS which satisfies

AS(K) = {H ∈ CT(L) |H � K}.

Example 2. Consider the following background theory and example:

B2 =
{

even(0) ←
even(s(X)) ← odd(X)

}
,

E2 = {odd(s5(0)) ←}.

The predicates even and odd are respectively intended to represent an even number
and an odd number. The constant 0 means zero, and the function s is the successor
function for natural numbers. The term which is an n-time application of s to 0 is
written as sn(0). Then for HFP (E2, B2) we may expect the hypothesis

H2 = {odd(s(X)) ← even(X)}.

Hypotheses Finding via Residue Hypotheses with Resolution Principle 161

We show that FITGT,AS derives the hypothesis. At first we make a clausal theory

T2 =

⎧⎪⎪⎨⎪⎪⎩
even(0) ←,
even(s2(0)) ← odd(s(0)),
even(s4(0)) ← odd(s3(0)),
← odd(s5(0))

⎫⎪⎪⎬⎪⎪⎭ ,

which is a subset of ground(B2 ∪E2). The residue hypothesis for T2 is

Res(T2) =

⎧⎪⎪⎨⎪⎪⎩
odd(s5(0)) ← even(s4(0)), even(s2(0)), even(0),
odd(s5(0)), odd(s(0)) ← even(s4(0)), even(0),
odd(s5(0)), odd(s3(0)) ← even(s2(0)), even(0),
odd(s5(0)), odd(s3(0)), odd(s(0)) ← even(0)

⎫⎪⎪⎬⎪⎪⎭
Since H2 � Res(T2), H2 is in FITGT,AS(E2, B2).

4 Resolution and Anti-Subsumption

We show that deriving logical consequences from S reduces the search space for the gen-
eralizer AS. We need as preparation a definition and Lee’s Theorem, which shows that
deriving logical consequences of a clausal theory is accomplished by making resolvents
and deriving subsumed clauses.

Definition 10. Let S and T be clausal theories. We write S T if there is a sequence
of clausal theories U0, U1, . . ., Un such that U0 = S, Un is a variant of T , and one of
the following holds for each Ui (i = 1, 2, . . . n):

1. Ui ⊆ Ui−1.
2. Ui = Ui−1 ∪ {C} where C is subsumed by a clause in Ui−1.
3. Ui = Ui−1 ∪ {C} where C is a resolvent of some two clauses in Ui−1.

Theorem 2 ([7]). Let S and T be clausal theories. Then T is a logical consequence
of T iff S T .

The main theorem is now the following.

Theorem 3. Let S be clausal theory and T be a ground clausal theory. Then S T
implies Res(T) � Res(S).

Proof. There is a subset U of ground(S) and a sequence U0 = U , U1, . . ., Um = T which
satisfies the conditions 1–3 of Definition 10. Then Res(Ui) � Res(Ui−1), by Lemma 2,
Lemma 3, and Lemma 4 which are proved below. Therefore Res(T) � Res(S).

Before we will show that each operation for deriving Ui from Ui−1 implies Res(Ui−1) �
Res(Ui), we give a lemma on tautologies and subsumption.

Lemma 1. If a clause C is subsumed by a tautological clause, then C is also a tautol-
ogy.

Lemma 2. For ground clausal theories S and T , S ⊃ T implies Res(T) � Res(S).

162 Akihiro Yamamoto and Bertram Fronhöfer

Proof. From the definition, it is clear that T � S. Then Res(T) � Res(S) by Lemma 1.

Lemma 3. Let S be a ground clausal theory. If a ground clause D is subsumed by a
clause C ∈ S, then

Res(S ∪ {D}) � Res(S).

Proof. Without loss of generality, we can assume that

C = L1 ∨ L2 ∨ . . . ∨ Lm,

D = L1 ∨ L2 ∨ . . . ∨ Lm ∨ Lm+1 ∨ . . . ∨ Ln.

Then every clause F in S contains a literal ¬Li for some i = 1, 2, . . . , m, and is sub-
sumed by a clause F ′ in S ∪ {D} which is obtained by adding ¬Li to F . This means that
S ∪ {D} ⊇ S. If F is not a tautology, F ′ is not, either. Then Res(S ∪ {D}) � Res(S)
by Lemma 1.

Lemma 4. Let S be a ground clausal theory and C1 and C2 be clauses in S. Assume
that C1 has a literal L and C2 has ¬L and let D be the resolvent of C1 and C2 obtained
by deleting L and ¬L from C1 ∨ C2. Then

Res(S ∪ {D}) � Res(S).

Proof. We prove the theorem in the case when S = {C1, C2}. The proof can easily be
extended if S has more clauses. Let

C1 = L1,1 ∨ L1,2 ∨ . . . ∨ L1,n1 and
C2 = L2,1 ∨ L2,2 ∨ . . . ∨ L2,n2

and we can assume, without loss of generality, that

L = L1,1 = L1,2 = · · · = L1,m1 = ¬L2,1 = ¬L2,2 = · · · = ¬L2,m2

Then the resolvent D is

D = L1,m1+1 ∨ L1,m1+2 ∨ . . . ∨ L1,n1 ∨ L2,m2+1 ∨ L2,m2+2 ∨ . . . ∨ L2,n2 .

From the definition we get the following set of clauses:

S = {¬L1,i ∨ ¬L2,j | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2},
D = {¬L1,i | i = m1 + 1, m1 + 2, . . . , n1} ∪ {¬L2,j | j = m2 + 1, m2 + 2, . . . , n2},

S ∪ {D} = {C ∨ L |C ∈ S , L ∈ D}.
In order to show the result of the theorem, we consider three cases :
Case 1. When m1 + 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2,

¬L1,i ∨ ¬L2,j ∨ ¬L1,i " ¬L1,i ∨ ¬L2,j.

Case 2. When 1 ≤ i ≤ n1 and m2 + 1 ≤ j ≤ n2,

¬L1,i ∨ ¬L2,j ∨ ¬L2,j " ¬L1,i ∨ ¬L2,j .

Case 3. When 1 ≤ i ≤, m1 and 1 ≤ j ≤ m2, L1,i = ¬L2,j and therefore ¬L1,i ∨ ¬L2,j

is not in Res(S).
Combining the analysis of these three cases and by Lemma 1, we get Res(S∪{D}) �

Res(S).

Hypotheses Finding via Residue Hypotheses with Resolution Principle 163

5 Comparison to Other Work

Poole [12] formalized abductive inference based on resolution, by using the fitting
FITAB,AS where

AB(E, B) = {{H} | H = C for some a ground clause C such that B ∪ E C}.

Theorem 3 shows that FITAB,AS(E, B) ⊆ FITGT,AS(E, B), which means that the
fitting FITGT,AS is more powerful than Poole’s method.

Now we will compare FITGT,AS with the bottom method. Since we showed in [17]
that the bottom method is equivalent or more powerful than hypothesis finding meth-
ods well-known in the ILP area, comparison with the bottom method is sufficient.

The bottom method generates hypotheses which consist of only one clause. In the
terminology of this paper, it is FITBT,AS where

BT (E, B) =
{
{C}

∣∣∣∣ C is a ground clause such that B ∪ E ¬L
for every literal L in C

}
.

As mentioned in [16], FITBT,AI does not differ from FITBT,AS . Off course, it is clear
that the bottom method cannot derive any clausal theories consisting of more than
one clause, like H1 in Example 1. We showed in [17,18] that the hypothesis H2 in
Example 2 cannot be derived with the bottom method. We will give the difference
between FITGT,AS and FITBT,AS more formally as follows:

Theorem 4. For any HFP (B, E), it holds that FITGT,AS(E, B) ⊇ FITBT,AS(E, B).

Proof. All that we have to show is GT (E, B) ⊇ BT (E, B). Let C = ¬L1 ∨¬L2 ∨ . . .∨
¬Ln be a ground clause in BT (E, B). From the definition of BT (E, B), it holds that
B ∪E L1 ∧L2 ∧ . . .∧Ln. Since C = Res(L1 ∧L2 ∧ . . .∧Ln), we get a clausal theory
U by Theorem 3 which is a subset of ground(B ∪ E) and C � Res(U).

The proof of Theorem 4 shows which hypotheses may be missed by the bottom method.
Let U be the clausal theory in the proof and

U0 = U, U1, . . . , Um = L1 ∧ L2 ∧ . . . ∧ Ln

be a sequence of clausal theories deriving L1 ∧ L2 ∧ . . . ∧ Ln. Then FITBT,AS(E, B)
may not contain a hypothesis H such that H � Ui for some i = 0, 1, . . . , m − 1 but
H �� Um. The hypothesis H2 in Example 2 is such a hypothesis, and therefore is missed
by the bottom method.

The results above can be analyzed from a semantical viewpoint. We showed in [16]
that the bottom method is complete for deriving clauses H which subsume E relative
to B. The definition of relative subsumption was given by Plotkin [11].

Definition 11. Let H and E be clauses and B be a clausal theory. Then H subsumes
E relative to B iff ∀(Hθ → E) is a logical consequence of B for some θ.

The condition for the relative subsumption is equivalent to the condition that ¬HθσEμ
is a logical consequence of B ∪ E for some substitution μ which makes HθσE ground.
Then B ∪ E ¬HθσEμ by Lee’s theorem. The proof of Theorem 4 shows that
H ∈ FITGT,AS if H subsumes E relative to B, which is consistent with our previ-
ous work [16]. In other words, the relation of two clausal theories H and E defined by
H ∈ FITGT,AS(E, B) is an extension of Plotkin’s relative subsumption of two clauses.

164 Akihiro Yamamoto and Bertram Fronhöfer

6 Concluding Remarks

The problem of computing Res(S) from S is equivalent to the enumeration of all sat-
isfiable interpretations of S. This problem is similar to counting such interpretations,
which is denoted by �SAT and treated in a textbook on the computational complex-
ity [10]. The problem �SAT is in the class �P. Therefore the complexity of computing
the residue hypothesis is quite high in general.

This fact might explain why the abductive hypothesis finding method and the bot-
tom method were discovered earlier than our method. Assuming severe restrictions on
hypotheses, they derive clausal theories whose residue hypotheses are easily computed.
In fact, the abductive method generates theories consisting of a clause L1 ∨ . . . ∨ Ln

and the bottom method derives theories of the form L1 ∧ . . . ∧ Ln. In both cases the
residue hypotheses of derived theories are computed in linear time. But the comparison
in the last section shows that the efficiency is obtained by missing hypotheses which
might be important.

The generalizer we adopted in this paper is the inverse of subsumption. Resolution-
based theorem proving uses subsumption, factoring and resolution as inference rules.
Therefore the inverse of factoring and that of resolution might be considered as well.
Using them as generalizers in Procedure FITΛ,Γ (E, B) will be investigated in the near
future.

Acknowledgments

The authors thank Prof. Taisuke Sato, Prof. Chiaki Sakama, Prof. Hiroki Arimura, and
Prof. Koichi Hirata for fruitful discussions.

References

1. H. Arimura. Learning Acyclic First-order Horn Sentences From Implication, In Pro-
ceedings of the 8th International Workshop on Algorithmic Learning Theory(LNAI 1316),
pages 432–445, 1997. 157

2. W. Bibel. Deduction: Automated Logic. Academic Press, 1993. 157, 159
3. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Aca-

demic Press, 1973. 157, 159
4. B. Fronhöfer and A. Yamamoto. Relevant Hypotheses as a Generalization of the Bottom

Method. In Proceedings of the Joint Workshop of SIG-FAI and SIG-KBS, SIG-FAI/KBS-
9902, pages 89–96. JSAI, 1999. 157, 159

5. B. Fronhöfer and A. Yamamoto. Hypothesis Finding with Proof Theoretical Appropri-
ateness Criteria. Submitted to the AI journal, 2000. 157, 159

6. K. Inoue. Linear Resolution for Consequence Finding. Artificial Intelligence, 56:301–353,
1992. 156

7. R.C.T. Lee. A Completeness Theorem and Computer Program for Finding Theorems
Derivable from Given Axioms. PhD thesis, University of California, Berkeley, 1967. 161

8. A. Leitsch. The Resolution Calculus. The Resolution Calculus, 1997. 157, 159
9. S. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13:245–286,

1995. 156
10. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1993. 164
11. G. D. Plotkin. A Further Note on Inductive Generalization. In Machine Intelligence 6,

pages 101–124. Edinburgh University Press, 1971. 157, 163

Hypotheses Finding via Residue Hypotheses with Resolution Principle 165

12. D. Poole. A Logical Framework for Default Reasoning. Artificial Intelligence, 36:27–47,
1988. 156, 163

13. C. Rouveirol. Extensions of Inversion of Resolution Applied to Theory Completion . In
S. Muggleton, editor, Inductive Logic Programming, pages 63–92. Academic Press, 1992.
156

14. T. Sato and S. Akiba. Inductive Resolution. In Proceedings of the 4th International
Workshop on Inductive Logic Programming (LNAI 744), pages 101–110. Springer-Verlag,
1993.

15. A. Yamamoto. Representing Inductive Inference with SOLD-Resolution. In Proceedings
of the IJCAI’97 Workshop on Abduction and Induction in AI, pages 59 – 63, 1997. 156

16. A. Yamamoto. Which Hypotheses Can Be Found with Inverse Entailment? In Proceedings
of the 7th International Workshop on Inductive Logic Programming (LNAI 1297), pages
296 – 308, 1997. The extended abstract is in Proceedings of the IJCAI’97 Workshop on
Frontiers of Inductive Logic Programming, pp.19–23 (1997). 156, 163

17. A. Yamamoto. Logical Aspects of Several Bottom-up Fittings. In Proceedings of the 9th
International Workshop on Algorithmic Learning Theory (LNAI 1501), pages 158–168,
1998. 163

18. A. Yamamoto. An Inference Method for the Complete Inverse of Relative Subsumption.
New Generation Computing, 17(1):99–117, 1999. 163

19. A. Yamamoto. Revising the Logical Foundations of Inductive Logic Programming Systems
with Ground Reduced Programs. New Generation Computing, 17(1):119–127, 1999. 156

��������	
 �
	���
�	����� ������ �� 	 �������

����	����

������� ��	
 ��
 ������
������
�

�������� �� �	
��
����� ��� ����
������ �����

���

�������� ����

����

���� ���� �������� �!!�
� "#"��#$�� %&'&�

������(�)�
�*
��*+������*��*,!

��������� -��
� � ����
!� +�

�
�+� ��� � �
� �� �������
� �� ��	��!	

����
!��� .
 ������

 �+

������ !
�)	
� �+�� �+
 !
���
� ����
!��

��)������ �+
 �������
� �

 ,���
� ����
/���
)� � ��

* 0+
)����

��
��
�� ��

��	�
 �+�� ���1��� �� �� ���	�2
 �+
 ����
������ �+
 +�

�
�+�

����	�
� �� �
�

 �� �	������ �+
 �������
 �
� ��� �� ��
� � �
� �� �
�

�	

���

�
����
 ����
!��* �

�

 �� �+
 ��
��
�� �� �+�� ���� �� +�

�
�+��

����
� �	����3������* 4�
 �+�� !�
!��
� .
 ���
 � ���������� ���	�
���

���
!
��
��
 5��������� �+�� �+
��� ����	�
���
�)
�.

� �+
 +�

�
�+�

��� �+
 �������
� �� �+�� �+
 ����	�
���
� �

 ����
����
�
� .+
� .

�
�

�	�2
 �+��
 �������
� �� ���
 ����
!� �� �+
 ����	
* 6��
� �� �+

���������� .
 !

�
�� �� �	��
��+� ��
 �	��������� �������
� ��� ��
 ����

������ �+
 ����
!� +�

�
�+�*

� �������	�
��

�� ������� �� ���� ����������� ����� �� ��������� �� �������� � ��� �� ���������
��
 �� ���� �� �������� !���
 �� ��� ������"������# $��� � ������"������ ����
��������
����
� �� ��� ���
� �� �������� ��
 ��������� � �������# %���
��� �������� ��
 ��������� ���� � �����
�� ���� ��� ���������� ��������� ���&
�������
 !� ���� ��� ��
�� �������������� ���������# 	�� �� ��������� ������
�!��� ���� ����� ������
 �� ��� ����� ��� !���
��� ��
 ��'����� ��������� ��
��() ������� ���
�!��
���������# �� �� ��������� ���'����
 ���� !���
��� ���&
������ �� � ���
 ���� ��
 ���
� ���� ����# $��� ������� ������� ��� ��
�����
���� � ���� ��'� !���
������
*�� ��������) � ������������� ������ (((+,
-./ ��� ��� ����� ���
0��) � ���
 �� ����� ��() ��� ���������� �� �
������
���� ��������� � ��������� �� �������� ���
0�� �� ���� ����������
�����
��� ���� ��� ��(�� ��� ��� ��1�������
�'�����
��� ��������� ����
 !�
(((+, ��� ���
�2�������� �� ��� ��!�������� ������������ !�� ��� �����
�� � ������� ��������� ��'��'�
 �� ���
���������#
� �'��) (((+,
��� ���
������� �������� �����������) ���� �� ����� ��
 �����) �� ���������� �����) ��
���
�������� �� ��������� �� ���� ���������
#

���� ������ ��
������� ����'���
 !� (((+,) ��
 ����� �� ������� � �����&
 ��� ��� ����� ������� ��'����� ������� ���������) ����� ��� �������� �������&
����# *�� ���� �������) � ������� � ������� -3) 4/) ������������ � �����������
-4/) �� � ��� ��
�� �������������� ��������# �������� ���� �5���� ��'� !���

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 1 6 6 - 1 7 7 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

������� ���� 	
� ���
�����

� ��� �������������

� ��

� ��������
� ��� �
��
	
���
 ����������� ����� �����
 	�
� ���� �� ��� 	
��
���� �
���
�

�� � �
����� ��������� �
 ��
��	 � ��
������

����� �� ���
��� ����� �� �

��� ������
	 ��
������ ����
�
� ���� �� ���

�� ������������

 �� ��� �

�� ����
	 ��������� ��� �� ����� ���� �
 ����
� ��� ��

��� ��
�����
 ��
��� ��������� ��
��	� �
 �
�
��� ��
���

� �� ���
 ����� ����
�
 ��
������
��� ��	��
 �� �� ���
��� �����

!� "
������� � �
����� ��������� ��
 ��� �

�
� �
� �
��� ������� #�����$
�����#� %���� �� ��� �
�
� ��
��

�� ���������� �
����� ��� �� ���

���� �

��� �
�� %
����� ��� ���

������
� ��
 �
 ��	
�����
� �� ���
 ��
�� ����������
���� ��� ��������� ��

��� �

 ��
����� �
�����

��
����� ���� ����������
��
�����
� ��� �
�� ��

 	���
 ����

������� ������������ ������� ���� ���
��

��� ����
��� ���
��
�����
� �
 �
������� ������

&����� ���
� �
���
 ���
 ���
���� �� ���
��� � 	�����
�� ���� ��� 	
��
����
���
����
� �
�����
�� �
������� ��� � ��� �
��
� �

��� ��� ��
�����

'���� � �
����� ��������� ��� �
��
	 ��
�����

	 �������� �
�����
� ���
������� �
�����

��
����� ��� ��
�����
 ��� (����� ���������� �� � �
���

&�� ��
��
������� �
 ��

��� ���
 �
�)��� �
 �
 ����� � ��� ��	
�����
� ��� ����$
����� ���
���
 ��
���� �
 ���

�	� ��� ��
�����
�� ��� �
 	
�� �
��
	
�����
������������ �
�����
� ���� 	�
� ���� ���

� *� ��	�� �
 ���
�������
	 ���

���� �
 ���������$������ ���

������
��

+
� ���
 ����

�� �� �����
����������
 ������� �
�����
 �� ��� ��������� ���
��� ��
�����

 ���� ���
����������
 ��� ��������� ���� ���� �� �������� �
��

� ��
�����
 �

�� �
����� �� ��� ������� &��
 �
�����
� �
 ������ �
���������� ,����������� -
�����
� .�,-/�

&��
 ����� �

����� �� �
 	
��
�
� +��
� �� �����
�!� �� ����

�� �������
�

��
�� -
��-��

�� ���
����� �
 ��� ���������� 0!1� ,� �����
� 2� �� ��	
������
����
���� � ���

������
� ��
���� ��� �3�����	� ��� ,� �����
� 4� �� ���
���
���������� ,����������� -
�����
� ���
�
�

�� ��
������
 ��
�� ��� ,� ���$
��
� 5� �� ���
��� � 	
���� �������
�
	 ���

������
� ��
� ��� � �
���
�
�����
���
������ ���
�
� ���� ���

������
�
 �� �������� ���	
��
� ,� �����
�6� ��

������ � ���
 ������

� �������	�
��

*� ��
� �����
�� �������� �
 ��
����� �
�����
� -
��-��

��� ��� ����
����
���
������� �������
������
�
 	
� �
������� ��� ���
� �
��
�
��
���� ���
��������
�

	 ��

� �
�� �
�����
� ���� ��� ��� �
 ������
��
����
	 �
�����
�

,� -
��-��

��� � ��
������
� �
 	
������ � �����
��
	 �
�
������
 	
� ��$
��������
�(���
� ��� �
 �
�� �
 ���
�� �
��
	 ����������

���
	���� ��� ���
�
�
������
 �� ��� ��
������
�� ����� ��
���

� ��
������
�
 �� ��� 	
��
	 �
�$
(������� �
���� 	
��
 ����
�� �

	 ����������� &
 ��
����� ����
�
 ������
�$

���
 ������� ����������
� -
��-��

�� ��
����
 ����� ����

	
���
�
� ���������

1 6 7C o nc e pt ual C lassif ic at io ns Guide d by a C o nc e pt H ie rarc hy

����� ��� ��� ���� ����� ��� ��� ���� ��� ����	
��� ��� ��� ���� ��� ��� ���� ���	� � �
����

� ��
	���	
�
�
�� ��� �� ��� �� ��	 ��
	���	
	� �� � �	

� ������������ � ������
�	��
�
�� ��� � ����
�
�� �	��	�
��	��� ��	�
�	 �
������
�

��	�
� �
��
����
�
��� �	 ���	�
	� ��
�	 �������	�
�
�� �������	����

���� ��������� ��� ���

�	�����
��
 �� ������� ���	� 	
�
 ��
��� �	 � �	��	�
�
�	 �	
 �� �	�

	��
��	�	 ������� ��
�	 �
��
��
�
�
� �	��
�
�� �	��	� �� ��������
� 	��
�	�	 	���

 ��� ��� ���� �� 	 ����
��
 ����� � ����� �
��� �
� � � � �
� �� ��� �	 ���

��
 	 �� � ������� ���	�
�
 �� ��������
� 	� �
���� !� � ���
"
��	� �
����� � ���
��� �	 ���

	� ��

��������
� 	�� 	 � �� �#�

�����	�
 �������	����

���� ��������� ����� �� ��������� ���������� �$�

�	�����
��
� �
� ��� ������� ���	� �
�
� ��������	� ����������	�����
����������	����� ��������	� ��
��� �
��� !� ��
�	 ���	
� �
��
����
 ���� �$� %��

�
��	��
���

��������
� 	�� ��������	� ��������	�� �&�

'

	
��
 %��

�	 ��		 �������	
����� �� 	��� �
��
����
� ���� � �	�����
�
�
�� ���	� �� � �	

� �
��
����
� �
�
�	 ���(�	 ��		 �������	
�

��
� ��������
�� ���� �������
���

)
�
�	 ��		 �������	 �� ��	�� ��
�
�	 ���
��� ��
� �� ������ ���

	� ��
�� *
�	
�	�� ���	� �� ��
	���	
�
�
�
� ���

��	� �
����
�	 	�
	���
�
� � ��
�	��	� �� �
���� �
��
� ��� � � � ��
� �
�����)
� ���
���	�

+��� � � � �	��
�� ��
��	��� � �	��
��
��
��	���
��	���� �� ����	����� � ����	�� ���	
����	�����
��	���� ����	����� � �

,� ����
�
�

�	�	 �
��
������ �	 ���	 ��

�	� �
��
����� ���������������
�� �
������� ��
��
��
 �� � �
����� �
��	(�	��	
���
�� ,� ���
 �
��
��� ��������
�������� � ������ �	�

	�
�	 �	

� ��� �
��
����
�� 	�
�	�
��	
� 	(����
� �
�"
�
����
� �	���	� ��
� � �	�����
�
� ��
,�
�	 ���	
� �	�����
�
�� ��
� 	(����
� �
��
����
�� �
 �� �
��	��	�

 �	��	"

�	�
 	��� �	�����
�
� �� � �

	� ���	�
	� ������ ����	� � �
��	�
 ������ �
�
�	
�	��
��� ��
�
 	(����
�	� �� ��
������ �	���-	� �� ��
� �
���
��	� ��
�	 ������
.
�	�	��
��� ���	� �� ������ �
��	��	� ��
� �� ���	����� �
���
��	 �	
�		�
�	�����
�
��� �
 �	
��

�	 �	
�����

1 6 8 Y uhsuke I t o h and M ako t o H araguc hi

��� ������	
��
 �
� ����
 �����
 ��������

��� ��� �� 	
���
 ���
����� ������� �� ��	���������� ����� ������ ��	����
�

��� ������������ ���
 �
� ������ �� ����
�� ���
������������ 	������ ����
���

����� ��� �� ��
� � ��� ������� �
�� �������� ����
��������

��
 ��� ����
������� ��� ��� �� ��� ���� �� �	
�	��� �� ��
����� �� �� �
��� ��

�� � �� ����� ���� ����� �� ���

�� ���� �������� ��� ��
�	�� ��� �� ���� �������
� �� �� ��� ��� �� ��� ����
�� ������� ��

����������� 	
 ��� �������	
 ����
�	�����	� ��� ��������	��

��� �� � ��

��� ������� � ������� ��� ����� �	�����������	�
��� �� � ��	
����� ����� �� � � �� ���	 �� �� ��
��� ��	
����� � ��	
�����

����� �� �� �� � ���	 �� �� ��

�
�� ��� �
���������� ���� �� �	
�	��� ��� ���
� �����
���� ��
 �� �� ����
����� �� ��� ������ �� �
��
 �� ����� �� �� �	
�	��� ��� �� �	���� �� ����� �� ��
�
� � � �� �� ��������
� ��� !����	"� ��� ������� "
���
��
���������� #	�����
��
��
�� ��� ����
�� �
����" ���� �� ���� ����� �� �� ���� ��
���� �$��������
��� ��� ����
��	
� ��
 ��������

%���� �� ��� ��&������ ��� �������� �� �	
�	�������� �� ���� ��&�� �����
������ �	
�	��
 �'()� ��
 ���
�� �

��
������ �
 *���� ��� �
 ��
� ����
������� ��� �� ��� ���� � � �� �� �� ���
����� ������ �	
�	��
 �� �� �� ��� ��������" ���������� �
� �����&��+

�,� ��
 ��� �� �� � �

�-� � � �� ����� �������
 �� � � ��
 ��� ��

.�� �����
	����� �� ��� �� ��
� ������
 �� &���� �	������ ��������� ��

���"��/��" ��� ����
�������� ������
� �� �	���� ��
����� ���� ��� ��
�����
�����
	���
�� ��
� �� � .�� �
���������
���� �� � ��
��� �����#	���� �� ���
��&������ ��� 0
��������� ,�

����������� �
 ��	
����� � ��	
����� � ��	
���� ����

(����
�� ���� ��� 1��� ���
����� �� ���� ��� 	��&������ ������ �� ���

�� �� �� ��
� ��
���� ��
 �� �	���� �� �������
 � ��� 	���� �� 	���

����������� �
 �� 	�� ��� ��� �������	
 ���������

�� �� 	�� � �� ��� � � ,� -�
�� �� � � �� �� � ,� -� ���	 � � �� 	���

.�	� �� 	�� �� "
������ ����" ����
������� �	
�	���
�
��� ��� �����
�� 	�� � �� ����

1 6 9C o nc e pt ual C lassif ic at io ns Guide d by a C o nc e pt H ie rarc hy

� ���������	�
� �

���� ��� � �
������� 	
 �
��� �	

� ������� �	�
�
��� � 	
 ������ �
 � ��	��
�� �� ��
�
	��	��

��� ����

��� ��� ����� ��
�
	��	�� � 	
 	� ��

��� �� ��� ��
�
	��	��
 	� � �
� ���	�������

��� ���
� ��	
�
 � ��	��� ��
��� ��
�
	��	�� ����� ������ ������ ��
 ����
� � � � ���

 �� ����� ��
�
	��	�� � ������
 !���
���	�"!�
	��� 	�
 �����
	�� �����

������
 �� 	���
�
����	�� ����	�� #� ����
 ��
�
� 	� 	

	���� �

�
�	�" ����
���
� 	
 �� ���
�
�	�� �� �� ����$��� %�
����
� ��� ��
�
	��	��
 �� �
�
�	�
���	������ 	� �� � �� ��� �� � ��� ��� 	
 ��
����� �
	���� �
 �� � ���
&�����
 	� ��	
 ����
� �� �� ��� �	
�	�"�	
�
������	� �����	�� !'! ��� ���
���	������� � ��
 �����	���� ������	�����

(�
 ��� ��
�
	��	��
 �� ��� �� 	� � � ��
�� ���� �� 	
 � �
�����

�
 �� ��

	� ��
��
���
 �� � %�
����
 �� 	
 ������ � ��
��� �� �� 	� �� 	
 � �
�����

�

�� �� ��� 	� ���
� ��	
�
 �� �� � � � ���� ���
��� ���� �� � �� � ��� ��
��
��� �� � 	
 ������� �� �����

�
������� ����� ��� ���� �� ' � �� ��
�
	��	��

��� ���� �� ' �������
)�
� ��

�
����
 �� � ���� �
��
��� � �� � ��
�
	��	�� � 	� ��� �	�
�
��� ��
��� 	
 �
	���� �
 ��	
���� (
�� *
���
	�	�� �� �� ����

� � ��
�	���� � �����
�	���� � ��
�	���������

(�
 �� ��� ��
�
	��	��
 	� ��	

������� �
� ���	������� ���
� ��	
�
 �� ���
� ���
� � ����
��� ���� �� ����
 ����	�
 �� +��� � 	
 ����

���� �
 � ��� ���
�
�	��
�� ��
� �
����

�
 ���� �
�� 	�
 ��
��� ��� #���	�	����
���$	�"� ��
�"�
� �
���� �
�� �
��� �
 � ,�� �� ���
�
�	�� ���	�	��
 �� ��
� ��
�
���	�� �������
�
#� ����� �� ���� ��� ������	�" �
���
	�	���

����������� 	
 ������� �� � ��� �	�
 �� � �� � �� � ��	�� 	'
 ��

�
 � ��
�	��� ��
�� �� �	�� "�� �� �� 	�
����� ��
�
	��	�� ��
��� ��������
-�� ��� �� ����� � ���

 �� 	�
�����
 	
 �� "	�� �
�����"��"� �� ��
�
	�� ����
	��	�	���� ��
�
	��	��
 � &�����
� 	� ��	
 �
��	�	��
� ����
� �� ���
 ��� ��$�

��� �
�
�
	��	��� +� � ���
	�	��� �
�	�	�"
�� �� 	

	���� ������ �
 �
�� ��
��
�
	��	��
 ������ ���
� 	� ��

�� 	��
������� ���
�	�" ��"�
	����
���	�	�" � �
�	�	�"
�� �� ��
���
	�"��
��
�
	��	�� 	� ��� �����
��
�� ��
 ���� ��
����
���	�� 	� .�/� #�
����� �� �
�
���
��
� � ���

	����	�� �
����� �� �	�	�� � "	��� �
�	�	�"
�� �� �� ��
�
	��	��

�� � ��
�	�	�� ������ (�
 ���� ��� � ��� �� �������
 ��� � ��
 	� ��� ��

�"�
��� �
 � $	�� �� ���������� ���

	����	�� �� �
�	�	�" 	�
�����
 �
 � �
�����
�� ���
�	�" ����	��� �������
 �
�� ���

1 7 0 Y uhsuke I t o h and M ako t o H aragu c hi

��� � ����	
 ��
��	
 �� ��
�
���������
� �	
�����
����

���� ������	�
� �
����	� � ������ ������� 	
 ��
� ��� �� �
�����
 ���
�
����
������ ���������	�
���

��
 �
����	 ���
�
��� � ��� � �� � 	
� �
����	� ������ ���� �
	���� �� �
�����	 � �������� �� ���	���� � � ��� � ���� �� �
��	�� ����
 � �������
�
	�� 	
����� �������	�
� � � �� ���� ���� �� ���� �
��� ����
��	�
� � ����
������ ��
�� ����	 	���� 	��	 � �� �
	 �� ��� ��	� ����
 �
����	 	
 ����� �
���
���� ��� ��	��	�
�
����� �������
�
��!� ��	��	�
� ��� �
����	��� �
����
	�
� ��
�	 	�� �������	�
� ��	���� ����
�� ��� ������� �
����	�� "� �
�����

	��	 	�� ���
�
��� �� ����� ��	� �

 ���� � ��
�
� ���� ��#��� ��� � �
��	 	

	�� �������	�
� � � �� ���� 	�
��� 	�� �������	�
� �� �
������� ������ $
 	��
��
�
��
� ���������	�
�
� ���	����� �� 	
 �������� 	��� ��� 	
 ����
�	� �� ����
 ��	� ����
�� ����
��	�
� ���

���� 	
 	�� ���������	�
�� %�	�
��� �� ��� ����
��
�
�� �
�	�
�
� 	
 ���
�� �

 � ���������	�
�� �� �
�����
 �� 	��� �
�������
�
����
 � ���
�
���������� ���������	�
��

&

 ���	����� ����
�� �� ���� � �
����	 ���
�
��� ��
�� �� &���
� ' ��
����� 	�� �
	�
�
� (����) �
���� �� ������ �� 	��
	��
 ����� 	�� �
	�
�
�
��� �
���� �� �
	 �
����	��
����	�
�� �� �� $���
�� ��
	��
�

� �� ���� ��
�

���� � ����
��	�
� �� �� *+�� �
���� �� �
�����
 +�����*� ����� ���� �� ��
���	���� ����
��	�
�
� ��� �
���� �� ������ �� �� &

 	�� (����) �
���� ��� ���
�
���� ���� ��,�
��	 ������� ����� �� ��� �� � �� ���� �
� �
	 �������� ��
������ 	
���
� ��	 �� ��������

��� �

���
����� ����
��	�
��
� ���	���� (����) �
���� ��� ��� �
���� �
�
����� �� &���
� -� ���
� � � ��� 			� �� ���
��
(�) � �� � 			 � �� �
� ���
�
����	�
��
� (� � ��)� 			� (� � ��) ���
��
(�) � ��� ����
��
(�) � ���

�����	������

�
��

����

�
��

�
��

����

�
�

�

�����

���	

�������

��	

�

��	

� �� ��

����

�
�����

���� �� � �����
 ��
���	��

1 7 1C o nc e pt ual C lassif ic at io ns Guide d by a C o nc e pt H ie rarc hy

�������� 	 �� �
�����

���� 	 � � �
����� ��
���� ������� � ��� ����� ��
�
������ �
�
����
��� �

����� 	 �
� �
���� � �
�� �
��� ��
���� ������� � ��
��
��
���� ������� � ����� ��
����������
���� �������� � ��
� ���
��
���� ���� � ��
��������� � � ���
��� �

 �� �
����� �
�����

�� ���� 	 �
� �
����� ��
���� ������� � ��
��

�������
��
���
���� �������� � ����
��� �
�
��
��
���� ������� � ��� ����� ��
����������
���� �������� � ��
� ���
��
���� ���� � ��
���������

� � ���
��� �

 �� �
����� �
����� ��
���� � ����������
��
�
������ �
�
����
��� �

���� �� �
���� �
��������

���� ��� ���	
�� ��
��� ���� �� ���
����� �� ��

����

����� �
������� ��
 �� ���
����� ���
�����
���� �� ��� ������ �� ��������� ���

�
������� ���
� ���
�������
���� ���� �
����
��� ���
����� �� ���� �����

��� �� ��� �����
�� ������
 �� ��� ����� �� �
�� ������	
� �� �!

���
������� ��
 �� ��� ���
��� ���
����� �� ���� ������ �� "����� ��
����!

#�� ��������� � ������
�$��
�� ��
��� �� ������
� ������� �� ���������!

%��������
� ���������&������ �
�������
����
�� �������
��� �� ��������

��
�� ������
 ������ �� �������� �����
��
� �� ��� �
������� ����
� �
��

���
������� ���
����� �� ��� ������ �� �������� ��
��� ���� �
��� ���
�����

���� �� ��� ������ �� "����� !

�� ��
��
�� ���	
�� �� ��
�� �	���� � ���
����� �� ��
������ ���� �� � ��
���

�� ���������� 	
��
�
��
�� ��
�����
 �������
��

� ����
���
� 	�
���� � ������
 �� � ��������� ��� ���
����� �� ����
����

�
��� ���� ��
 ������ �� ���� ���
����!

��
�� ���� �� ��� ������ �� �������� ��
����
���� ��� ����
 ������� ����&

�����
 �������
���� ��	����� 	�
�� �
��� �������
��� 	� � �� '����� (!)���

��� ���� ���������
 ����
����
 �����
� 	� �! �������� ����
�� ��������
 ��

������ �
 �������� ��
�� ��������� �

��
��
�� �� '����� *� ���� �� ���������
 ��&

�����
��� ����������� ��� ��
� � ����
���
� ��
������� 	�
�� �
��� �������
����

	������ ����	
�!

1 7 2 Y uhsuke I t o h and M ako t o H aragu c hi

� ���������	
��
�
��
��
 ��������� ��� � �������������

���������

����� �� ��	
� ����
����� �
����
��
�� ��
�����
 ����� ��� ������ �
� ���

�����
� �
 �
������� ����� �
 ���

������ �
�������
� ���� �� ���� �� �
���� ���� �� � ����
����� ������
 ��

������ �
 ���� ���
���
��� ������ �� ����
� ��
����� ���� � ����
����� �� � ���
�� ��
�����
� ������ �� ��� ����������
�� ��
�� �������� � ��� ! ��������� �
��������� ��
��� "��� �� ���� �� �������� �� ���� ��� ����
������

��������� �	
����
����� ������������ ���������� ��� � ����������
 ��

�
� ��� � ��� ��� �� ���� �� ������� ��� ���� ������� �� ��� �� ���� ! � ����

��
�� ��� �
� � �
� �� �
 ����

����������� �	
��� ��� �� 	
���
 ��
�� ������
��������� ���� ��� �� � � �� ��
 ��� ��������

��� ������ �� ���� ��� �� �
�� ��
�
 ��� ��� ������ �
��

��� ��� ��

����� ��� 	��
������ ��� ������
����
� � ��� �������� ��� ������ ��
�!� ������ �� ! � �� ��� ��" � � ���

�����	 ���� �� ���� ��� ���������
� �� ���� ��������� � �������� �
�
��������� � �������� ! ��������� � �������� ��� �
� ��	 �� � ���� #�
�� ���
��
�
����
 �� � ������ ��
��$��
�� �� ��� ��������
�
���� �� �%� � �&� �� ������
� '� ����� �&� � �%��
��
 ! � � �� '��
� �
���
�
� �
 �
� � �
 ��� �
� � � ���� '�������� � � ���� �
 � #�
��

 ! � �� � ���������
 �� !
� '��� �� ����
 ! ��������� (�)�*�

�	� � �
���! ��" #������#� ���� �������� ����������� ��� ���������!
���

���� ��� ����������
� ���
 ��� �����	�� ��� ������ �� �� ��
 ��
������ �
��
��
���� ���� ���� ��� ��� ���� ����
����� ���� � �� ��� �
���
��� ��� �����
+��
 � ������� �
 � ��
���� ��������� �� ����� �
�� ��
���� ��
������ ����
��� ��������
� ���� �� �� �� ��� �
 � ����� �
 ��� ��

���
� �
�
�����

����� ����

 ���� ����� �,���� � ���� ���� ����
 �� ��

� ! �� � ���� � ���� �� � �� !
 �-�

 � ��������� � ��� � ��������� �.�

��
�� �� ! � � � �� ! ������ ��� �� ����

������� ��� � �������� ! �������������

'��

�� �� ��
����� ��� ���� �����	� ��� ���� ���� ���������� � �����������
'��� ��� ���� � � � � � ���� ���� ���� ����
� ������
�� �� ��

��� ����
������� ! ��� ���
���� �� ��� ���� �� ��� ��������� ��

1 7 3C o nc e pt ual C lassif ic at io ns Guide d by a C o nc e pt H ie rarc hy

������ ��� � �� 	
 ��
� ����� ��� ����

� ��
����

��

 ���� ��� ������
���� ��� ���
�� �� ��
����

��� �
�
�
�� ����

 �
� �� �� � ����
�� ��
��
����

��� ���������� ����
� � �
���� ��������� �� ���� ��
�����

������ ���
�
�
���� �
�� � � ��� ��� ���� � � �� �
� ���� ��� ���

�� ��� �����
 ������������ ���� �������

 � � ������ �� � ��������
��
����� �� � � ��� ���

���
��� �
��
 � �� ��� ������ ��
���� �
� ���
�� ����
�� ������

���
���� ����
� ������� ��� �
��� ��� ����� ��
����

 �
���� ��
�� �
��� ��� ��
���� �������� ���
� ����
�� ������� � ���
!��� ���� ����
�
��
�������
�� ���
�� ������ ��
����� 	� ��� ����� ����

�
�
����

������
�

�
��
� �� ���� �������� ��
�� ������� ���
 ����
�
��� �������� ������� �
��� ���
�� ������ ��
���� "�
��
� ��
��

�
�
���

��
� �����

����#� ��� � ��� ��
� ���� ������� ��� ���� ��� �
��� �� ����
�� ����
�
� �����
��
$��
�
� �� �� %� �
 �&������ ������� "� ���� ������ ��
���� ��
� �
� ��� �� ���� �

����
�� ������

���
���� ���
 ����� � �������� ��
�

����
�� �������
� �
������ ������� �
��� ��� ������ ��
�����

��� ��� �� ��		
�� ��
����

���
����� ���

��
� �������
�
 �����
�� ��" �� �������

���
��� ���
��

� '	(� ��� ��
� ��������
������� "� ���� � �����
��
�
 �

 � �
� � ��� ����� ��

���
���� 	�
� ����
 ���
���� ���� ���� � � ��� ���"� ���� �
�
���
�� "
�� ������� �� �� ��� �
�
���
��
� � � "
�� �������
� ���� ������ �� � "�
�� �
� ��
���
�� "
��� '�

 �����
�� ���� ��� ��
�
�
�
 '	(� �
���� ������ ��� ����

���
��� ��
���

� ��� ����
������ �� �� ������� "� ���� ��� �����"

� ��)

�
�
�

�
������� �� *
��
 � �����
��
�
 � � �� �
 �+�
����
�� �����
�
 ��
� ��)
��
���

�� �� �� � � ��� � � ���

,� ��� ��
� �+�
����
�� �����
�
 �� �
�
��

���
�� ��� ���"

� ��� ����
�
�
���
�� "
�� � �
��
 �����
��
�

 ��� �
��������

��� ����	����� ���
�

���� ��� ������
� �
��

 ��� ������

� �������
�
��
� ���
 ��� ����� "��

�����

���
��

 �� ���� �� ����� �
� ������ ��
����

� "
�� �� "� ��
 �����
��
��

�� ���������� �������� "
�� �� '� ��� ����

� �������
� ��)
� ����
� �

 � �

%�
� ���"

 ��� ���
�� �� ��
����

� -./� � ���� ���� ��� ���� ����
��� �� �
���"

� ���� �� ��
����

�� ��� ���
�� �� �����
��
�
�

 �� '� ��� ��������
�

�
�
�
���
�
�� ���"��
 �����
��
�
� �
 ��� ���� �
� � �
��

���
�� �

�������
�� "� �� ��"
 � �
 ��� �����

� � ���	
-� ���/ � ��� � ���	
-� �����/ � ���	
-� ���/����

1 7 4 Y uhsuke I t o h and M ako t o H aragu c hi

�� ��� ���� 	
 ��� �	���
 �� �	�����	 ������� ��
 �������� 	
 �	�� ��� �	���

�� �
���� ������ ��� 	�� �� �	�����	 ������ ���� ��	� ��� ���� ���������
 �	
��� ������ �	���
 ���������	�� ���
 ��� �����
	�� ��������� ���	 ��� ���� ��	��
���	����� �	 �� � �	��!���� �� "����� #
������ ��������$�� ��� �	��	� 	
 �	���

�	 ��� ����	������ �	���
 �� �	�����	 ������� ���� ��� �	���
 �� �	�����	 ���
��
 �������� 	
 ��� �	���
 �� �	�����	 ��	� ��� ���� ��� ���	���� ���������
�
���� ������� �� �	 ����������� �	�����	 ��� 	���� ���� �!�� �� ��� ���� 	
 ���
�	���
� "	�����
 �� ����� �%����&
	� ���� �������� ���������	� �	 ���	����� ��
���� � �	����� �� � �	 ���� ��� �	�����	����� ���������
 �� ��&�����

��������� �	
�����
 �
��������� ����
� '�!�� � �	����� ��������
 � ���
�� �������� ���������	� �� � ���������	� � � � �� ������ � �%����& 	
 � �

�#� � � � �(��
�)� ����� �&���� �� ����� 	�� � � � �� ���� ���� ������ � � � ��� ���
�*� �	 �������	� 	
 + �� � �������� ��� �	�����	� �)��

��� �	�������� � � � �� ��� �	����	� �)� �� � �	�������� ���� �� ����
 �����
�	
	�� �
�	� ��� ������ ���������	� ����� �����
� ��	
������� �(��	
�����
�� �����	�� ��� �	�����	� �*� ��,����� ���� ��	
��� � �� (��	
���� � ��
	�
��
 �������	� �� 	
 � �� ��

�	� �������� ����������
 ��
�������

-�������
�
	� ���� �������� � � ��� �%����& � 	
 � �� �����
 ����������� ���
���� �,��!������ ������	� �� �� ���� �	 ������

 �%����&�� ����������

�	��!��� �� �������� ����� ��
 �&��� ��!���� �%�������
	� �� �������� ��%
�������	� �� "	� ���� �� � ��� ��� �%������� ��
 ���
 ��� �� �	������ � �
���� 	

������������ ������� ��� �%������� ��� ��� ���������

���� ��������� � � ��
 ���
� � �� ��� �� � ���� �������
 	
 ������
���� ������� �	 � �� ���
	��	���� ������
#� . �� �	������� ��	���� ��� ������������ � ���
 ���
 � ��� �	 � � ���
)� � ���
 ���
� ��� ��� ��� ��� ������������ �� ��� 	����!�
�	� � �
���� �!��
����� �� ��� ��	�
�	� ��� !����	��� 	
 � �� ��������� �

��� � ���
 ���
 � ���� 	���,�����
� �
 ����� �&���� ��	���� �

� ���� ���
���� �%������� ��� ��� �	�����	����� ������������ � ��� (�� ��� �
	�
��� ��� ����� �&���� � ���	�� �!������ ��	���� ���� � ��� �� ��� ��	����
���	 ��� ���� 	���

-���� 	� ���� �������	�� �� ���� ���
	��	���� �������	��

��������� � 	 ����	�� �� ��!� � ��������
 � ��� �� �������� ���������	�
��� ��� "	� ��
�� � ��� �� ��� �� ��� ���� �,��!����� ������ �� ������� ��
�� � ��� �
 �#�
%�	������� (
%�	������� ��� �)�
	� ���� � �
%�	��������
�� �� �� �	���� �����
%�	������ ���	��� ��� ��� 	
 ��� �%������� 	
 ��

���
	��	���� ��	�	����	� /��� �	�����	��� �	 0�	�	����	� 1�

1 7 5C o nc e pt ual C lassif ic at io ns Guide d by a C o nc e pt H ie rarc hy

����������� 		
 ��� ��� �� �� ���	
������ ���

 ��� � ���� � � ��� ����

���� � �� ��� ��� � � � ���� ���
� ���
��	
��
 ��� ��� ���
�����
�	���� � ��

����

�����
 ��� ����	
����
�����	� ��		��� ���� � ���� ����� ��� ���� �����
 ����
��
� �� ��� �� �� ���� ���� �� � �� �� ��	
��

�� ��� ���� ���� �
	���	� ����
���� ���� ����� ���� �� ���� � ����� ���� ���
����

�� � �
��

�
� �

����

� � ���� ��

� � ��
� � �� ���

����� � � � �� !�� ���� ���� ���� �� ��� "�
 ��� ���� �����"�
����������

�
�����
� �
�� ���� 	
��
��

�����
�

� 	 	
��
���� ��� ��� �� � ���� ��
�� ���
��

��������� ���� �� �
#�
��
 #� �
�����
� � $���� ���� ��%
���� ��	
� ��� ���� �� ��

���� ���� �
��
�����
�

� !
���������� ��� ������
�

�� � %�����	�&����� �� ��� ��
��� ����	

� ��� ��%
���� #� ��� ��		����% ������������

����������� 	�
 ��� ��� �� �� ���	
������ ���

 �� �� �	�� ���
�	��	��
 ���� ���� ����
���� ����� ��	
�
 � ���	�� �� ���	� �������	 ��	��
 ���� ���� ���
��� ���� �����
��
 ���
���

����������� 	

 !	
�� ��� ���
�� �� ��� ���	�	�� 	�
�����
� ��� ������ ���� �����
�� ��� "���	�	�� ������	��� �� ��� ���	
������ �����	�� �� ����� ��� ��� ��
��	"�

�	�� � � �
��� ���� � � ����� �� �� �� ��� �
��	
��
 ��� �	�� ��
"��� �� ��

�
� �� ���������

'�� �� �	%������ ���������% �
� ��(
������ �� �	���� �� ����	� ��	�
	���� ���
�(
��	���� �	����� ������ � ���� ��
 ���� � ���
���������� ���� ��� ����
�(
���	���� �	��� ���� !��� ��� ����������)� ��� �����"�� $�*�

�� ����������&� ��� #������� �� �
� �	%������� �� "��� �����

�� ��� �	���
�� �����#	� �	����"������� %
�
�
 #� � ���������� ���
�����	� ����+��%� �
�� �
�	��� �� �#�����
 #� ���%�����% �� �������% ���� ����������� �

�
 �� ����� ��
��� ���������� !�� ��� %�����	�&����� ��������� �� �����
���
 �� ���	�&� �
�� ��
���������� �� "���
�"�� � ���

 ��
��	"��� � �� � "���� ��� �� %�����	�&������ ��
�������� �� �� ���� ��� � ��
�"��
 �� � "���� ��� ���� ������� �
�� ���� �� �
�� ��� ���� �� � �� ����� �� ���� ��� ��		����%
�"������ �� �	����"�������
%
�
�
 #� � ����������

��������� 	�
 , �	����"������ %
�
�
 #� � ���������� ��
�"��
 �� � "���� ���
���� ���� ��� �� �	���
���������� �� � ����� ��������

� �
�� ����� ��� ��� � � ���

����� ������ �
��(
� �	���
��������� � �
#�
���% �� ���� ��� � �

�
�� � ���

!��� ���
�"������� �� ��� �	������ � � �� �����
��% �� ����� �	���
�������
��� �
#�
��� �� �� ����� ���
� �� ��
 �� ��� ��%��
�
 �(
���	��� ��
 �	����"�

���� ��� ���� %��
� �������� ���� ��� �
#�
��
 #� ��� ���� ��
 ���
��(
�

��������� �� �� '��� ���� �� �		�� �
#�
������� #������ �	���
����������� !��

1 7 6 Y uhsuke I t o h and M ako t o H aragu c hi

��������� �� �	� ����
� 	
���
 �������� �	� �
�����
� ��� 	
���
 �� �
�����

������ �� �������� �
 �	� �
�����
� ��� 	
���
 ��� �	�� ��
 ���������
� ���
	
���
 �	
�� �������
 ����� ��� �
� �
�����
 ������ ��� �������
 �������� �

�	� ��� 	
���
 �
������

�
� �� ��� ����
 �
 �	
� �	�� �����������
�
�� ���
���	� �
�������

���������	 ����� � ���		�
������ ���� �������
����� �� � � �� ��� �� ���

	��	���� �� ��� 	��� ��	������� �� �������� �� � ���

��
�	�� �
���� � �������
� ��� �� � ���
������� �
 � �� ����
� � ���������

� �	� �������
� ������ �
 �	� �����������
� ���� ���� ��� ������ �
 ��

����	 !���� ��� �� ����� ��	"�#� �
� ���	 � � ��� ��

��	"�# $ �� �
� �
� � �%��	
�"�#��

&�����
� � � ���	"�# 	
��� ��� ��	"�# �� � ����� ��������
�� �
�� ����
��
�	�� �� 	��� � �����������
� ������ �
 � ��� �	�� ��
 �� ��� �� �� �� ���
�������� �
 �������� ��������
�� �� ��� �� �� �	� �����������
�� �����������
�
'	��� ��
� �	� ��
�
����
� () ���
��

�� � ���	"��# � ��� "*#

	
��� �
� � $ (� +�
'
 ��
�� �	� �	�
���� �� ��,��� �
 �	
� �	�� �� � �� ����� 	
���� -���
��

�
 �	� �
�����
 �� � ��� '	�� �������
 ������� ���	"��# $ ���	"��#� '	��� �

�	� ���������
�� "*#� �� � ���	"��# � ��� 	
��� �
� � 	$ �� &����
 �	�� �
����%
���� �
 �	� ��������
� �	�� � ����� �������
� ��������� �� �������� ���������
�
�� ������� .�/�0�

����
����� ��	 �����	� � � ��� ����� � �	 � ���		 ��	�������� �����

���	"�# � �� ����	�

����	 -���
�� � � �� $
� � ��� �
�� '	�� ������� �	��� �
� ��

� � �	���
������ � �%�����

� � ���	 �	��
 �
� � '	��� �	��� ������ "� �
# � ��	"�#
���	 �	�� ���	"�# � "� �
�
�� !
�
� �� ��������
 �	
���� �� 	���
���	"�# � ��� .�/�0�

�	�
��
��� ����������

1� ������������ �
���� 	�� ���� ������
 ����������� ��� ������ �
� � ����� ���

� ���������
�� �2 ����� �
�� ���������
�
� &
��&������� '	� 	
���
 �������
	�� ���� ������ ��� �	� �
���� �����������
 ��������� �	� ���	� 3&- ��� ������
�� �� �� �������� �
����
� �� �	� 	������	
�

'	� �
���� ���� �
�� ������ ���������
 ������� �
 ������ �	� ���� �%�����

 �	�� �
�� �	�� ��
 �%������� ��� �
��� �
� �� ��������� �� '	�� �� ��������
�	� ���������
� �������� �%������� ��� ��
�����
�� �
�	 �� ��� ��������� ���

1 7 7C o nc e pt ual C lassif ic at io ns Guide d by a C o nc e pt H ie rarc hy

����������	��
 �� ���
�� �� �� ��� �� ���
 ���� �� ���	
�� ��� ���	��� ��� �	���
����
����
 ������ �������	� �� ��� ���
�
��
 �� ������ �����		
 �����
�� ����
����
�	�������� ��� ��	���	� �����
��
�������� �������� �� � ������ �� �� �����
���� �� ���� ��
� ��
��� ����

 ��
 ��� ���� �� ��	���	� ����������

�� ��� ����
 ���� ��� �����
� ���� �� ���� ����
����� �� �������� �� ����
�� �
��� ���� � � � ������� 	�
��
� !�
����
 �� ���
����� ���� ��� �����

�� ����
������� �� � ��� ���
�� �
 �������� � ���
����� ���� ���� ��� ���
��
��
� �� 	�
�� ���� "	������ ��� �����
� �� ����	� �� ����� � ���� ��
��
�����
�
������ ��� �������� �� ��� ���
�
��
 ��� ���#���� ����
������ 	���	� �����
��
���� ��� ����������

� �������	�
 ��
����

$��
� ���		
����� � 	�� �� ������ �� ��� $�� ���� ����
���� ����� �����
�	����
�� ��� 	���	 �� ����
������%

�� ��� ���� �� !&' � 	�� �� ��
� ������� �
� ���
�� �� ��� �� ���	� �� � ����
���� �� �������� �������� � �������� �(�
��		
 � ������� �������� ���������� �
���� � ��������� ��
 ������ ���� !&' �������� � 	�� �� ��
�� ����� �������
�� ��

 ����
��� ��� ���� ���
� ���� ��� �
���� �������� ����
������� �� ��

����
��� 	���	� $��� �� ����� �� ���� ���� ��
�����
 �
 �� ���� � ��	������
������ �� ������ ����
������� �� ���� ���#���� 	���	 �� ����
������� �
 �� ���
�) ����
������ ���� �
� ��� ���� ����
��� �
 ����
���� *�
����	�
	
 ����
����
�� ��� ��+������ �� �#����	����
�	����� �� �		��� �� �� ���� � ����	���� �
���
�� ���������� ���� � ���� ��		 ������ �� ��� ���������	 ����
������� ���� ��

��
����	�
 �
���
���� ���� �
� �	�� ���
�� ���� ���� ��

 ����
��� ,�������, ��
��
 ���
�
��
� �� ���� � ���� �� ���� ��� ����
�+��� ��
������ ���� �� �	����
�� �� ���� "�����
 ��
 �� ���� ���� ���� �
��	�� ����� �� ��� ��!!- ��
�	��
���� �� +�� � ������	 ����
������ �����
� �� ���	��� �������� ���������� .�

��!!- ��� ���� �
�����		
 �������� �� �� �� ��	�� ��	���	� ����
��� �
��	��
��� ������#�� ��		 �� �	�� ���� ��
 ���������	 �	����+������� �� ��	���	� ���������

����������

�� �������	�
 ����

� ������� �	������� ������� ���	���
� ���� ��� ��� ���� ��
�������� ��� �

�� !�!���"	�
 #�#��$"� %"	 �	����&���
' �()	$*���
��� ����*$ +�
" ,-.���
' ���/
$
����
$� ������� ���	���
� ���� �0� ��� ���� �� � ������ ��� �

�� #����1.��� %��"���"���
 ��2
$.3�� ���'��1��� %�1	 ������
"1 (�� ���4��� ����
	
5����$ �(%+� %�		 ��

	�� ����.��	$� ���� ��� �� ��6���� ������	�� �����

7� 8��
�"� 9��+�	4�	 :	;�$��� �(���*	�
.�� #�	���*"' &�$	 �� � ���$$�<*�
��� ��$
	�
%"	$�$� #�33��4� 5��;	�$�
'� ���� =�� >����	$?�

�� %�8�1��.*"�� � �	��� 2�
����' :	<�	1	�
 ,�;����1	�
 .$��� � @	�	��� 2�
����'�
���*� !��3$"�� �� �����*�
��� �(����* ������11���
� �	��� :	�$������ �� �0 �
�6�� ���7�

%"�$ ��
�*�	 +�$ ���*	$$	4 .$���
"	 ��%,A 1�*�� ��*3��	 +�
" ����� $
'�	

1 7 8 Y uhsuke I t o h and M ako t o H araguc hi

Learning Taxonomic Relation by Case-based

Reasoning

Ken Satoh

Division of Electronics and Information, Hokkaido University
N13W8 Kita-ku, Sapporo, 060-8628, Japan

ksatoh@db-ei.eng.hokudai.ac.jp

Abstract. In this paper, we propose a learning method of minimal case-
base to represent taxonomic relation in a tree-structured concept hier-
archy. We firstly propose case-based taxonomic reasoning and show an
upper bound of necessary positive cases and negative cases to represent
a relation. Then, we give an learning method of a minimal casebase with
sampling and membership queries. We analyze this learning method by
sample complexity and query complexity in the framework of PAC learn-
ing.

1 Introduction

This paper proposes a method of learning a minimal casebase to represent a
relation of objects in a tree-structured concept hierarchy. Suppose that we would
like to learn “eat” relation between CARNIVORA and FOOD using the taxo-
nomic structure in Fig. 1. We assume that once an instance of the leaf class in
the above structure satisfies/dissatisfies a property, then it applies to all the in-
stance in the class since the leaf class denotes the objects which satisfy the same
property. Suppose that we observe that an instance of LEO eats CHICKEN.
Since nothing prevents to believe that every instance of CARNIVORA eats ev-
ery instance of FOOD, we believe so. Suppose that we observe that an instance
of AILUROPODA does not eat PORK even if he is hungry. Then, this is a coun-
terexample of our current belief. We need to revise our brief. One way of revising

��������
�������

ANIMAL THING

CARNIVORA�����
�����

PANTHERA

�
�

�
�

LEO TIGRIS

URSA
���

			
AILUROPODA ARCTOS

FOOD�����
			

MEAT

			
CHICKEN BEEF PORK

PLANT

�
�
���

BAMBOO NUT

Fig. 1. Taxonomic Structure

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 179–193, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

180 Ken Satoh

is to make an experiment for other instances. Since LEO is PANTHERA which
is one hierarchy down from CARNIVORA, we check whether an instance of the
other class of PANTHERA, which is, TIGRIS eats PORK. We find that the in-
stance of TIGRIS eats PORK and therefore, we now believe that every instance
of PANTHERA eats every instance of FOOD. By iterating this kind of observa-
tions and experiments, we can learn exact “eat” relation between CARNIVORA
and FOOD.

In this paper, we formalize this phenomena by case-based reasoning. In order
to perform classification task by case-based reasoning, we introduce a similarity
measure and we accumulate negative cases and positive cases in a casebase. We
can check a tuple of instances in the relation by deciding whether the nearest
case to the new tuple belongs to the relation.

In [Satoh98] and [Satoh00], we use a set-inclusion based similarity for a case
represented as a tuple of boolean-valued attributes.

In [Satoh98], we have shown that for every boolean function f , we can rep-
resent a boolean function f in a casebase whose size is bounded by |DNF (f)| ·
(1 + |CNF (f)|) where |DNF (f)|(|CNF (f)|, resp.) is the size of a minimal
DNF(CNF resp.) representation of f . Specifically, we have shown that a boolean
function defined by a casebase with our similarity measure is a complement of
a monotone extension [Bshouty93, Khardon96] such that a set of positive cases
in the casebase is called basis in [Bshouty93] and negative cases are assignments
in the monotone extension.

In [Satoh00], we have proposed an approximation method of finding a criti-
cal casebase and analyze the approximation method in PAC (probably approxi-
mately correct) learning framework with membership query. Let n be a number
of propositions and ε < 1, δ < 1 be arbitrary positive numbers. If |DNF (f)| and
|CNF (f)| is small, then we can efficiently discover an approximate critical case-
base such that the probability that the classification error rate by the discovered
casebase is more than ε is at most δ. The sample size of cases is bound in poly-

nomial of
1
ε
,

1
δ
, |DNF (f)| and |CNF (f)| and necessary number of membership

queries is bound in polynomial of n, |DNF (f)| and |CNF (f)|.
In this paper, we extend these results so that we learn a relation of ob-

jects in tree-structured concept hierarchy. Specifically, we analyze case-based
representability of relations and propose an approximation method of a critical
casebase which is a minimal casebase representing the considered relation.

There are works on applying case-based reasoning for taxonomic reason-
ing [Bareiss88, Edelson92]. [Bareiss88] takes a heuristic approach of learning a
relation between objects. [Edelson92] uses case-based reasoning for computer-
aided education to identify correct generalization. However, as far as we know,
there are no theoretical results on computational complexity on these applica-
tions of case-based reasoning.

In this paper, we use the least common generalized concept to which two
objects belong for similarity measure between these objects. Moreover, for simi-
larity between two tuples of objects, we use set-inclusion based similarity over the
least common generalized concepts. These similarity measure is not numerical-

Learning Taxonomic Relation by Case-based Reasoning 181

based similarity. The idea of non-numerical similarity has been suggested by vari-
ous people [Ashley90, Ashley94, Osborne96, Matuschek97]. [Ashley90, Ashley94]
firstly propose set-inclusion based similarity measure for legal case-based rea-
soning and [Osborne96] and [Matuschek97] pay attention to properties of these
non-numerical similarity measure. This paper can be regarded as an application
of these research to taxonomic reasoning.

The structure of this paper is as follows. In Section 2, we define taxonomic
reasoning and in Section 3, we propose CBR which performs taxonomic reasoning
in CBR and in Section 4, we discuss case-based representability of relations and
in Section 5, we propose a learning method of a minimal casebase to represent
a relation and in Section 6, we summarize our contributions and discuss future
work. The proofs are found in Appendix.

2 Taxonomic Reasoning in Tree-structured Concepts

O is a set called a set of objects. C is a finite set called a set of concepts. We
introduce a tree T called concept tree each of whose node is associated with an
element in C. The root of the tree is denoted as top(T) and we define a function
parent which maps an element c in C except top(T) into another element in C
which is a parent node of c in T . Conversely, a function child maps an element of
c except leaf nodes into a set of child nodes of c. The height of the tree denoted
as height(T) is defined as the largest number of edges in a path between top(T)
to any leaf node in T and width of the tree denoted as width(T) is defined as
the number of leaf nodes.

We say that c1 is more general than cm (written as cm ≺ c1) if there
is a path between c1 and cm in a concept tree such that parent(cm) =
cm−1, parent(cm−1) = cm−2, parent(c3) = c2, parent(c2) = c1. We write cm % c1

if cm ≺ c1 or cm = c1.
We call concepts associated with the leaf nodes of T leaf concepts. We define

a function class from O to leaf concepts so that each object in O belongs to a
leaf concept.

Let c1 and c2 be concepts. We define lcgc(c1, c2) (called the least common
generalized concept w.r.t. c1 and c2) as the concept c such that there is no less
general node c′ than c such that c′ is more general than c1 and c2. We also define
gcgc(c1, c2) (called the greatest common generalized concept w.r.t. c1 and c2) as
c1 if c1 % c2 and as c2 if c2 % c1 and undefined otherwise.

Let c1, c2 and c3 be concepts. We say c1 is more or equally similar to c2 than
to c3 if lcgc(c1, c2) % lcgc(c1, c3). For example, in Fig. 1, we have the following.

1. LEO is more or equally similar to TIGRIS than to AILUROPODA, since
lcgc(LEO, T IGRIS) = PANTHERA and lcgc(LEO, AILUROPODA) =
CARNIV ORA and PANTHERA % CARNIV ORA.

2. CHICKEN is more or equally similar to PORK than to BAMBOO,
since lcgc(CHICKEN, PORK) = MEAT and
lcgc(CHICKEN, BAMBOO) = FOOD and MEAT % FOOD.

182 Ken Satoh

Let o1, o2, o3 be objects. We say o1 is more or equally similar to o2

than to o3 denoted as lcgc(o1, o2) % lcgc(o1, o3) where lcgc(o, o′) denotes
lcgc(class(o), class(o′)).

We call an n-ary tuple of objects in On a case. Let O be a case. We denote
the i-th component of the tuple O as O[i].

We define lcgc(O1, O2) as

〈lcgc(O1[1], O2[1]), lcgc(O1[1], O2[1]), ...lcgc(O1[n], O2[n])〉

We also define class(O) as 〈class(O[1]), ..., class(O[n])〉.
Let O1, O2 and O3 be cases. Then, we say O1 is more or equally similar to

O2 than to O3 denoted as lcgc(O1, O2) % lcgc(O1, O3) if for each i (1 ≤ i ≤ n),
lcgc(O1[i], O2[i]) % lcgc(O1[i], O3[i]).

We have the following important property for %.

Proposition 1. Let O, O1, O2 be cases. lcgc(O1, O) % lcgc(O2, O) iff
lcgc(O1, O2) % lcgc(O, O2).

We define a language which expresses a taxonomic relation. We introduce n
variables x1, ..., xn which represent the position of arguments in the relation. An
atomic formula has the one of the following form:

– x % c where x is one of x1, ..., xn and c is the name of a concept in C which
means that x is less or equally general than c.

– a special symbol, T which means truth.
– a special symbol, F which means falsity.

A formula is the combination of an atomic formula and ∧ and ∨ in the usual
sense. We denote a set of all formulas as L.

Let us regard an atomic formula as a proposition. Then, L can be regarded as
negation-free propositional language. Then, we can define a disjunctive normal
form (DNF) of a formula in L as a DNF form of the translated propositional
language. Similarly, we also define a conjunctive normal form (CNF) of a formula
in L as well.

We can also simplify a formula along with the following inference rules (to-
gether with usual propositional inference rules):

((x % c1) ∧ Φ) ∨ ... ∨ ((x % cm) ∧ Φ) and child(C) = {c1, ..., cm}
(x ≺ c) ∧ Φ

((x % top(T)) ∧ Φ)
Φ

(x ≺ c) ∧ Φ and child(C) = {c1, ..., cm}
((x % c1) ∧ Φ) ∨ ... ∨ ((x % cm) ∧ Φ)

x % c1 ∨ x % c2 and lcgc(c1, c2) = c1

x % c1

Learning Taxonomic Relation by Case-based Reasoning 183

x % c1 ∧ x % c2 and gcgc(c1, c2) is c1

x % c1

x % c1 ∧ x % c2 and gcgc(c1, c2) is undefined
F

For example, in the above “eat” relation, we would have the following cumber-
some DNF representation:

((x % LEO) ∧ (y % CHICKEN)) ∨ ((x % LEO) ∧ (y % BEEF))
∨ ((x % LEO) ∧ (y % PORK))
∨ ((x % TIGRIS)∧ (y % CHICKEN)) ∨ ((x % TIGRIS)∧ (y % BEEF))
∨ ((x % TIGRIS) ∧ (y % PORK))
∨ ((x % AILUROPODA) ∧ (y % BAMBOO))
∨ ((x % ARCTOS) ∧ (y % CHICKEN))
∨ ((x % ARCTOS) ∧ (y % BEEF))
∨ ((x % ARCTOS) ∧ (y % PORK))
∨ ((x % ARCTOS) ∧ (y % NUT)).

or the following compact DNF representation:

((x % PANTHERA) ∧ (y % MEAT))
∨ ((x % AILUROPODA) ∧ (y % BAMBOO))
∨ ((x % ARCTOS) ∧ (y % MEAT)) ∨ ((x % ARCTOS) ∧ (y % NUT)).

Let F be a formula in L. We define |DNF (F)| as the smallest number of
disjuncts in logically equivalent DNF forms to F induced by the above inference
rules and we define |CNF (F)| as the smallest number of conjuncts in logically
equivalent CNF forms to F as well.

Let O be a case and F be a formula of L. We say that O satisfies F denoted
as O |= F if one of the following conditions hold.

1. If F is an atomic formula xi % c, then class(O[i]) % c.
2. If F is of the form G ∧H , then O |= G and O |= H .
3. If F is of the form G ∨H , then O |= G or O |= H .

We define φ(F) = {O ∈ On|O |= F}.

Definition 2. LetR ⊆ On. We callR an n-ary relation over objects if it satisfies
the condition that a case O is in R if and only if every case O′ ∈ On such that
class(O′) = class(O) is in R.

The above condition for R expresses that cases has the same properties if
every class for each component of these cases belongs to the same leaf class.

Definition 3. We say that a set of cases S consists of representatives if for every
O ∈ S, there is no O′ ∈ S such that O �= O′ and class(O) = class(O′).

A subset of S, S′, is a representation set of S if S satisfies the following
conditions:

184 Ken Satoh

– S consists of representatives.
– S is maximal in terms of set-inclusion among subsets of S consisting of

representatives.

We say that a formula F ∈ L represents R or F is a representation of R if
φ(F) = R. Note that any relation over cases can be represented as a disjunctive
normal form as follows.

Definition 4. Let R be an n-ary relation and S be a representation set for R.
We denote the formula

∨
O∈S((x1 % class(O[1]])) ∧ ... ∧ (xn % class(O[n]]))) as

DISJ(R).
We define |DNF (R)| as |DNF (DISJ(R))| and |CNF (R)| as

|CNF (DISJ(R))|.
It is obvious that for any relation R, DISJ(R) represents R. Conversely, for

any formula F ∈ L, φ(F) expresses a relation.

3 Case-based Taxonomic Reasoning

Definition 5. Let CB be a set of cases which are divided into CB+ and CB−.
We call CB a casebase, CB+ a set of positive cases and CB− a set of negative
cases respectively.

We say a case O is positive w.r.t. CB if there is a case Ook ∈ CB+ such that
for every negative case Ong ∈ CB−, lcgc(O, Ong) �% lcgc(O, Ook).

Note that lcgc(O, Ong) �% lcgc(O, Ook) does not imply lcgc(O, Ook) ≺
lcgc(O, Ong) since % is a partial order relation.

In the above definition, “O is positive” means that there is a positive case
such that O is not more or equally similar to any negative case than to the
positive case.

Definition 6. Let CB be a casebase 〈CB+, CB−〉. We say that n-ary relation
RCB is represented by a casebase CB if RCB = {O ∈ On|O is positive w.r.t. CB}.

Conversely, any relation R can be represented by a casebase 〈CB+, CB−〉
where CB+ is a representation set of R and CB− is a representation set of On−R.
Therefore, we can perform “taxonomic reasoning” by case-based reasoning.

From Proposition 1, the following holds.

Proposition 7. Let CB be a casebase 〈CB+, CB−〉. A case O is positive if
and only if there is a case Ook ∈ CB+ such that for every case Ong ∈ CB−,
lcgc(Ook, Ong) �% lcgc(Ook, O).

Definition 8. Let S be a set of cases and O be a case. We say that S is reduced
w.r.t. O if for every O′ ∈ S, there is no O′′ ∈ S such that O′ �= O′′ and
lcgc(O, O′) = lcgc(O, O′′).

Let S be a set of cases and S′ be a subset of S and O be a case. S′ is a
reduced subset of S w.r.t. O if S′ satisfies the following conditions:

Learning Taxonomic Relation by Case-based Reasoning 185

– S′ is reduced w.r.t. O.
– S′ is maximal in terms of set-inclusion among subsets of S having reduced-

ness w.r.t. O.

We say that a subset of S, NN(O, S), is a nearest reduced subset of S w.r.t.
O if it is a reduced subset of the following set w.r.t. O:

{O′ ∈ S| There is no O′′ ∈ S s.t. lcgc(O, O′′) ≺ lcgc(O, O′)}

For a positive case Ook, we only need the most similar negative cases to Ook in
order to represent a set of cases which Ook makes to be positive. Furthermore,
it is sufficient to have only one equally similar negative case among the most
similar negative cases to represent a set of cases which Ook makes to be positive.

Therefore, we only need any arbitrary nearest reduced subset of CB− w.r.t.
each positive case to represent the same relation as the following proposition
shows.

Proposition 9. Let CB be a casebase 〈CB+, CB−〉. Let CB′ =
〈CB+,

⋃
Ook∈CB+ NN(Ook, CB−)〉 where NN(Ook, CB−) is any arbitrary

nearest reduced subset of CB− w.r.t. Ook ∈ CB+. Then, RCB = RCB′ .

4 Case-based Representability

In this section, we discuss an upper bound of minimal casebase size to represent
a relation.

Lemma 10. Let R be an n-ary relation over objects and CB+ be a subset of R
and D1∨ ...∨Dk be a DNF representation of R. Suppose that for every Di, there
exists Ook ∈ CB+ such that Ook ∈ φ(Di). Then, R = RCB where CB = 〈CB+,R〉.

For the next lemma, we need the definition of O↓l
O′ and PNN(O,R) defined as

follows:

Definition 11. Let O and O′ be cases. We define a set of cases O↓l
O′ for l(1 ≤

l ≤ n) such that class(O[l]) �= class(O′[l]) as follows. O′′ ∈ O↓l
O′ if O′′ satisfies

the following condition:

– parent(lcgc(O′[l], O′′[l])) = lcgc(O′[l], O[l])
– lcgc(O′[j], O′′[j]) = lcgc(O′[j], O[j]) for j �= l(1 ≤ j ≤ n).

O↓l
O′ is a set of the nearest cases to O′ among cases whose lcgc with O′

differs from lcgc(O′, O) in the l-th concept. Note that the number of elements
of a representation set of O↓l

O′ for l-th object is at most width(T).
In the “eat” relation, if O = 〈oA, oN 〉 where class(oA) = AILUROPODA

and class(oN) = NUT , and O′ = 〈oL, oC〉 where class(oL) = LEO and
class(oC) = CHICKEN , then O↓1

O′ = {〈oT , oN∨B〉| class(oT) = TIGRIS
and (class(oN∨B) = NUT or class(oN∨B) = BAMBOO) }, and O↓2

O′ =
{〈oA∨A, oB∨P 〉| (class(oA∨A) = AILUROPODA or class(oA∨A) = ARCTOS)
and (class(oB∨P) = BEEF or class(oB∨P) = PORK) }.

186 Ken Satoh

Definition 12. Let R be an n-ary relation over objects.
We say that a subset of R, PNN(O′,R), is a pseudo nearest reduced negative

subset w.r.t. O iff it is a reduced set of the following set w.r.t. O:
{O ∈ R| For every l(1 ≤ l ≤ n) s.t. class(O[l]) �= class(O′[l]),

for every case O′′ ∈ O↓l
O′ , O′′ ∈ R}

Note that for every pseudo nearest reduced negative subset w.r.t. a case
O′, PNN(O′,R), there is a nearest reduced set of R w.r.t. O′, NN(O′,R) s.t.
NN(O′,R) ⊆ PNN(O′,R), and conversely, for every nearest reduced set of R
w.r.t. O′, NN(O′,R), there is a pseudo nearest reduced negative subset w.r.t. a
case O′, PNN(O′,R) s.t. NN(O′,R) ⊆ PNN(O′,R).

Lemma 13. Let R be an n-ary relation over objects. Suppose that D1∧ ...∧Dk

be a CNF representation of R and O be a case. Then, for every pseudo nearest
reduced negative subset w.r.t. a case O, PNN(O,R), |PNN(O,R)| ≤ k.

Corollary 14. Let R be an n-ary relation over objects and D1∧...∧Dk be a CNF
representation of R and O be a case and NN(O,R) be a nearest reduced subset
of R w.r.t. O. Then, |NN(O,R)| ≤ k. Especially, |NN(O,R)| ≤ |CNF (R)|.

By Lemma 10, Proposition 9 and Corollary 14, we have the following theorem
which gives an upper bound of representability of n-ary relations.

Theorem 15. Let R be an n-ary relation over objects. Then, there exists a
casebase CB = 〈CB+, CB−〉 such that RCB = R |CB+| ≤ |DNF (R)|, |CB−| ≤
|DNF (R)| · |CNF (R)| and |CB| ≤ |DNF (R)|(1 + |CNF (R)|).

5 Learning Critical Casebase

We firstly give a definition of a critical casebase.

Definition 16. Let R be an n-ary relation over On and CB be a casebase
〈CB+, CB−〉. CB is critical w.r.t. R if CB satisfies the following conditions:

– R = RCB
– There is no casebase CB′ = 〈CB′+, CB′−〉 such that R = RCB′ and CB′+ ⊆
CB+ and CB′− ⊆ CB− and CB′ �= CB.

The above definition means that if we remove some of cases from CB, the new
casebase no longer represents R.

The following results(Theorem 18 and Lemma 20) are related with a minimal
set of negative cases and positive cases.

Definition 17. Let R be an n-ary relation and CB be a casebase 〈CB+, CB−〉
such that RCB = R. CB− is a set of minimal negative cases w.r.t. CB+ and R if
there is no casebase CB′ = 〈CB+, CB′−〉 such that CB′− ⊂ CB− and RCB′ = R.

The following theorem concerns about necessary and sufficient condition of
a set of minimal negative cases given CB+ and R.

Learning Taxonomic Relation by Case-based Reasoning 187

Theorem 18. Let R be an n-ary relation and CB be a casebase 〈CB+, CB−〉
such that RCB = R. CB− is a set of minimal negative cases w.r.t. CB+ and
R if and only if CB− =

⋃
Ook∈CB+ NN(Ook,R) where NN(Ook, CB−) is any

arbitrary nearest reduced subset of CB− w.r.t. Ook ∈ CB+.

The above theorem intuitively means that if CB+ and a set of negative case CB′−

represents a relation R, we can reduce CB− down to
⋃

Ook∈CB+ NN(Ook, CB−).

Definition 19. Let R be an n-ary relation and CB be a casebase 〈CB+, CB−〉
such that RCB = R. CB+ is a set of minimal positive cases w.r.t. R if there is no
casebase CB′ = 〈CB′+, CB′−〉 such that CB′+ ⊂ CB+ and CB′− is any arbitrary
set of negative cases and RCB′ = R.

The following lemma shows a sufficient condition on a set of minimal positive
cases.

Lemma 20. Let R be an n-ary relation and CB be a casebase 〈CB+, CB−〉 such
that RCB = R. Suppose for every Ook ∈ CB+, Ook �∈ R〈CB+−{Ook},R〉. Then,
CB+ is a set of minimal positive cases w.r.t. R.

Now, we propose an approximation method of discovering a critical casebase.
In order to do that, we assume that there is a probability distribution P over
On. We would like to have a casebase such that the probability that the casebase
produces more errors than we expect is very low.

The algorithm in Fig. 2 performs such an approximation. The algorithm is
a modification of [Satoh00]. Intuitively, in the algorithm we try to find counter
examples by sampling and if enough sampling is made with no counter examples,
we are done. If we find a positive counter example then we add it to CB+ and
if we find a negative counter example then we try to find a “nearest” negative
case to a positive case from the found negative counter example.

In the algorithm, O ∈ R? expresses a label whether O ∈ R or not. If O ∈ R
then the label is “yes” and otherwise “no”.

The following lemma gives an upper bound for a number of positive counter
cases.

Lemma 21. Let R be an n-ary relation and D1 ∨ ... ∨ D|DNF (R)| be a DNF
representation with a minimal size |DNF (R)| of R. Suppose that the situation
that O ∈ R and O �∈ RCB occurs during the execution of FindCCB(δ, ε). Then,
for every 1 ≤ k ≤ |DNF (R)|, if there exists Ook ∈ CB+ such that Ook ∈ φ(Dk)
then O �∈ φ(Dk). This situation happens at most |DNF (R)| times.

The following lemma gives an upper bound for a number of negative counter
cases.

Lemma 22. Let R be an n-ary relation over objects. Suppose that the situation
that O �∈ R and O ∈ R〈{Ook},CB−〉 occurs for some Ook ∈ CB+ during the
execution of FindCCB(δ, ε). Then, there exists some O′ ∈ PNN(Ook,R) such
that lcgc(O′, Ook) % lcgc(O, Ook) and O′ �∈ CB−. This situation happens at most
|CNF (R)| times for each Ook ∈ CB+.

188 Ken Satoh

FindCCB(δ, ε)
begin

CB+ := ∅ and CB− := ∅ and m := 0

1. O is taken from On according to the probability distribution P and
get 〈O, O ∈ R?〉 as an oracle.

2. If O ∈ R and O �∈ R〈CB+,CB−〉, then

(a) CB+ := CB+ ∪ {O}
(b) m := 0 and Goto 1.

3. If O �∈ R and O ∈ R〈CB+,CB−〉, then
for every Ook s.t. O ∈ R〈{Ook},CB−〉,
(a) Opmin := pminNG(O, Ook)
(b) CB− := CB− ∪ {Opmin}
(c) m := 0 and Goto 1

4. m := m + 1

5. If m >=
1

ε
ln

1

δ
then

output CB+ and
⋃

Ook∈CB+ NN(Ook, CB−)

where NN(Ook, CB−) is any set among the nearest reduced
subsets of CB− w.r.t. Ook ∈ CB+.

else Goto 1.

end

pminNG(O, Ook)
begin

1. For every 1 ≤ l ≤ n s.t. O[l] �= Ook[l], we take any arbitrary
representation set of O↓l

Ook
and denote the representation set as

S.
2. For every O′ ∈ S,

(a) Make a membership query for O′.
(b) If O′ �∈ R then O := O′ and Goto 1.

3. output O′. /* O′ ∈ PNN(Ook,R) */

end

Fig. 2. Approximating a critical casebase

By the above two lemmas, an upper bound for a number of negative counter
cases is |DNF (R)| · |CNF (R)|.

Let R1ΔR2 be a difference set between R1 and R2 (that is, (R1 ∩ R2) ∪
(R1 ∩R2)).

The following theorem shows that we can efficiently find an approximation
of a critical casebase with high probability if |DNF (R)|, |CNF (R)|, width(T)
and height(T) is small.

Theorem 23. Let R be an n-ary relation over objects and T be a concept

tree. The above algorithm stops after taking at most (
1
ε

ln
1
δ
) · |DNF (R)| · (1 +

Learning Taxonomic Relation by Case-based Reasoning 189

|CNF (R)|) cases according to P and asking at most n2 · width(T) · height(T) ·
|DNF (R)| · |CNF (R)| membership queries and produces CB with the probability
at most δ such that P(RΔRCB) ≥ ε.

The next theorem shows that output from FindCCB(δ, ε) is an approxima-
tion of a critical casebase.

Theorem 24. Let CB be an output from FindCCB(δ, ε). If RCB = R, CB is a
critical casebase w.r.t. R.

6 Conclusion

The contributions of this paper are as follows.

1. We show that for every relationR with a concept tree T , in order to represent
R, an upper bound of necessary positive cases is |DNF (R)| and the upper
bound of necessary negative cases is |DNF (R)| · |CNF (R)|.

2. We give an learning method of a critical casebase and we analyze computa-
tional complexity of the method in the PAC learning framework and show

that the sample size of cases is at most (
1
ε

ln
1
δ
) · |DNF (R)| ·(1+ |CNF (R)|)

and necessary number of membership queries is at most n2 · width(T) ·
height(T) · |DNF (R)| · |CNF (R)|.

We would like to pursue the following future work.

1. We would like to extend our method to handle multiple-inheritance.
2. We would like to extend our language to include negations and extend our

method to learn a formula in an extended language.
3. We would like to generalize our results for more abstract form of case-based

reasoning.

Acknowledgements I thank Prof. Akihiro Yamamoto from Hokkaido Univer-
sity on discussion of proofs and useful comments and anonymous referees for
instructive comments of the paper. This research is partly supported by Grant-
in-Aid for Scientific Research on Priority Areas, “Research Project on Discovery
Science”, The Ministry of Education, Japan.

References

[Ashley90] Ashley, K. D.: Modeling Legal Argument: Reasoning with Cases and Hypo-
theticals MIT press (1990) 181

[Ashley94] Ashley, K. D., and Aleven, V.: A Logical Representation for Relevance Cri-
teria. S. Wess, K-D. Althoff and M. Richter (eds.) Topics in Case-Based Reasoning,
LNAI 837 (1994) 338–352 181

[Bareiss88] Bareis, R.: PROTOS; a Unified Approach to Concept Representation, Clas-
sification and Learning. Ph.D. Dissertation, University of Texas at Austin, Dep. of
Computer Sciences (1988) 180

190 Ken Satoh

[Bshouty93] Bshouty, N. H.: Exact Learning Boolean Functions via the Monotone
Theory. Information and Computation 123 (1995) 146–153 180

[Edelson92] When Should a Cheetah Remind you of a Bat? Reminding in Case-Based
Teaching. Proc. of AAAI-92 (1992) 667 – 672 180

[Matuschek97] Matuschek, D., and Jantke, K. P.: Axiomatic Characterizations of
Structural Similarity for Case-Based Reasoning. Proc. of Florida AI Research Sym-
posium (FLAIRS-97) (1997) 432–436 181

[Khardon96] Khardon, R., and Roth, D.: Reasoning with Models. Artificial Intelligence
87 (1996) 187–213 180

[Osborne96] Osborne, H. R., and Bridge, D. G.: A Case Base Similarity Framework.
Advances in Case-Based Reasoning, LNAI 1168 (1996) 309 – 323 181

[Satoh98] Satoh, K.: Analysis of Case-Based Representability of Boolean Functions by
Monotone Theory. Proceedings of ALT’98 (1998) 179–190 180

[Satoh00] Satoh, K., and Ryuich Nakagawa: Discovering Critical Cases in Case-Based
Reasoning (Extended Abstract). Online Proceedings of 6th Symposium on AI and
Math, http://rutcor.rutgers.edu/ amai/AcceptedCont.htm (2000) 180, 187

Appendix: Proof of Theorems

Proof of Proposition 1 Let O[i], O1[i], O2[i] be i-th component of O, O1, O2.
Suppose that lcgc(O1[i], O[i]) % lcgc(O2[i], O[i]). Since O1[i] % lcgc(O1[i], O[i]),
O1[i] % lcgc(O2[i], O[i]) by transitivity. Since O2[i] % lcgc(O2[i], O[i]),
lcgc(O1[i], O2[i]) % lcgc(O2[i], O[i]) = lcgc(O[i], O2[i]). The converse holds in
a similar way.

“lcgc(O1[i], O[i]]) % lcgc(O2[i], O[i]]) iff lcgc(O1[i], O2[i]) % lcgc(O, O2[i])”
holds for every i(1 ≤ i ≤ n) and the proposition holds.

Proof of Proposition 7 By the original definition that O is positive and by
Proposition 1.

Proof of Proposition 9 We need to prove the following lemma.

Lemma 25. Let CB be a casebase 〈CB+, CB−〉. Let O′
ng ∈ CB− and CB′ =

〈CB+, CB′−〉 where CB′− = CB− − {O′
ng}. If for all Ook ∈ CB+, there exists

Ong ∈ CB′− s.t. lcgc(Ong, Ook) % lcgc(O′
ng, Ook). Then RCB = RCB′ .

Proof: Clearly, RCB ⊆ RCB′ . Suppose that RCB �= RCB′ . Then, there exists
some O such that O �∈ RCB and O ∈ RCB′ . This means:

– ∀O′
ok ∈ CB+∃Ong ∈ CB− s.t. lcgc(Ong, O) % lcgc(O′

ok, O).
– ∃Ook ∈ CB+∀Ong ∈ CB′− s.t. lcgc(Ong, O) �% lcgc(Ook, O). Let O′

ok be such
Ook.

Then, lcgc(O′
ng, O) % lcgc(O′

ok, O).
By Proposition 1, this means lcgc(O′

ng, O
′
ok) % lcgc(O, O′

ok). However, since
there exists Ong ∈ CB′−, lcgc(Ong, O

′
ok) % lcgc(O′

ng, O
′
ok) by the condition

of O′
ng, there exists Ong ∈ CB′−, lcgc(Ong, O

′
ok) % lcgc(O, O′

ok). This implies

Learning Taxonomic Relation by Case-based Reasoning 191

lcgc(Ong, O) % lcgc(O′
ok, O) again by Proposition 1 and leads to contradiction

with O ∈ RCB′ .
Proof of Proposition 9 (continued)

Suppose Ong �∈ ⋃
Ook∈CB+ NN(Ook, CB−). Then, for every Ook ∈ CB+,

Ong �∈ NN(Ook, CB−). This means that there exists O′′ ∈ CB− s.t.
lcgc(Ook, O′′) % lcgc(Ook, Ong). Therefore, by Lemma 25, RCB = RCB′′

where CB′′ = 〈CB+, (CB− − {Ong})〉. Even after removing Ong from CB−,⋃
Ook∈CB+ NN(Ook, (CB− − {Ong})) =

⋃
Ook∈CB+ NN(Ook, CB−), since other-

wise, Ong was in
⋃

Ook∈CB+ NN(Ook, CB−). Therefore, we can remove all Ong

such that Ong �∈
⋃

Ook∈CB+ NN(Ook, CB−) from CB− without changing RCB and
thus, RCB = RCB′ .

Proof of Lemma 10 Since R ⊆ RCB always holds, RCB ⊆ R. Therefore,
to prove the Lemma, it is sufficient to show that for every O ∈ R, there is
some positive case Ook ∈ CB+ such that for every Ong ∈ R, lcgc(Ong, Ook) �%
lcgc(O, Ook).

Suppose O ∈ R. Then, there exists a disjunct D of the DNF representation of
R such that O ∈ φ(D). This means that for every i(1 ≤ i ≤ n), if xi % c appears
in D, class(O[i]) % c. Let Ook ∈ CB+ be a case satisfying Ook ∈ φ(D). This
also means that every i(1 ≤ i ≤ n), if xi % c appears in D, class(Ook[i]) % c.
Therefore, if xi % c appears in D, lcgc(class(O[i]), class(Ook[i])) % c.

Suppose that there exists Ong ∈ R such that lcgc(Ong, Ook) % lcgc(O, Ook).
This means that for every i(1 ≤ i ≤ n),

lcgc(class(Ong[i]), class(Ook[i])) % lcgc(class(O[i]), class(Ook[i])).

Therefore, every i(1 ≤ i ≤ n), if xi % c appears in D,
lcgc(class(Ong[i]), class(Ook[i])) % c and this implies class(Ong[i]) % c. Thus,
Ong ∈ R and this leads to contradiction. Therefore, for every O ∈ R, there is
some positive case Ook ∈ CB+ such that for every Ong ∈ R, lcgc(Ong, Ook) �%
lcgc(O, Ook). This means R ⊆ RCB.

Proof of Lemma 13 Let D be any clause in the above CNF representation.
We define a case Omin(D) ∈ R w.r.t. a clause D in the above CNF representation
of R as follows. For every j(1 ≤ j ≤ n),

– lcgc(class(Omin(D)[j]), c) = parent(c) if xj % c appears in D.
– class(Omin(D)[j]) = class(O[j]) if xj % c does not appear in D.

Suppose that O′ ∈ R, but O′ is not equal to any of the above Omin(D).
Since O′ ∈ R, there is some clause D in the above CNF representation such that
O′ �∈ φ(D). Then, for every j(1 ≤ j ≤ n), class(O′[j]) �% c if xj % c appears
in D. In other words, for every j(1 ≤ j ≤ n), c ≺ lcgc(class(O′[j]), c) if xj % c
appears in D.

Since O′ is not equal to any of the above Omin(D), at least either of the
following is satisfied:

– there exists j(1 ≤ j ≤ n) s.t. parent(c) ≺ lcgc(class(O′[j]), c) if xj % c
appears in D.

192 Ken Satoh

– there exists j(1 ≤ j ≤ n) s.t. class(O′[j]) �= class(O[j]) if xj % c does not
appear in D.

This means that lcgc(Omin(D), O) ≺ lcgc(O′, O). Then, for any O′′ s.t.
lcgc(Omin(D), O) % lcgc(O′′, O) ≺ lcgc(O′, O), O′′ �∈ φ(D). Therefore, O′ is
not included in any of pseudo nearest negative subsets of w.r.t. O.

Let PNN(O,R) be a pseudo nearest negative subset w.r.t. O. Then, the
above means that there exists a reduced subset S of {Omin(D)|D is a clause in
the above CNF representation of R} w.r.t. O such that PNN(O,R) ⊆ S. Since
|S| ≤ k, |PNN(O,R)| ≤ k.

Proof of Corollary 14 For every nearest reduced set of R w.r.t. O′,
NN(Ook,R), there is a pseudo nearest reduced negative subset w.r.t. a case
O′, PNN(Ook,R) s.t. NN(Ook,R) ⊆ PNN(Ook,R). Therefore, by Lemma 13,
|NN(Ook,R)| ≤ |PNN(Ook,R)| ≤ k.

Proof of Theorem 18 We need the following Lemma.

Lemma 26. Let R be an n-ary relation and CB be a casebase 〈CB+, CB−〉 such
that RCB = R. Then,

⋃
Ook∈CB+ NN(Ook,R) ⊆ CB−.

Proof Suppose that Ong ∈
⋃

Ook∈CB+ NN(Ook,R), but Ong �∈ CB−. Then, there
is Ook ∈ CB+ such that Ong ∈ NN(Ook,R). Since Ong �∈ CB− but Ong ∈ R,
there exists O ∈ CB−(therefore O ∈ R) such that lcgc(O, Ook) ≺ lcgc(Ong, Ook).
This contradicts that Ong ∈ NN(Ook,R).

Proof of Theorem 18 (continued) By Lemma 26,
⋃

Ook∈CB+ NN(Ook,R) ⊆
CB−. Suppose that CB− contains some Ong other than

⋃
Ook∈CB+ NN(Ook,R).

We consider two disjoint situations.

– Suppose that for all Ook ∈ CB+, there exists O′
ng ∈ CB− s.t. lcgc(O′

ng, Ook) %
lcgc(Ong, Ook). Then, by Lemma 25, RCB′′ = R where CB′′ = 〈CB+, CB′−−
{Ong}〉. Therefore, it contradicts minimality of CB−.

– Suppose that there exists Ook ∈ CB+ such that for every O′
ng ∈ CB−,

lcgc(O′
ng, Ook) �% lcgc(Ong, Ook). This means that Ong is in NN(Ook,R).

This leads to contradiction and thus CB− =
⋃

Ook∈CB+ NN(Ook,R).

Proof of Lemma 20 Suppose that there is a casebase CB′ = 〈CB′+, CB′−〉
such that RCB′ = R and CB′+ ⊂ CB+ and CB′− is any arbitrary set of negative
cases.

Then, RCB′ = R〈CB′+,R〉. Suppose that Ook ∈ CB+ and Ook �∈ CB′+. Then,

since CB′+ ⊆ CB+−{Ook}, R〈CB′+,R〉 ⊆ R〈CB+−{Ook},R〉. Therefore, Ook �∈ RCB′

and RCB′ �= R. Thus, it leads to contradiction.

Proof of Lemma 21 Suppose that O ∈ φ(Dk) for some Dk such that Ook ∈
CB+. Then, in order to make O �∈ R, we need to have a negative case Ong ∈ CB−

such that lcgc(Ook, Ong) % lcgc(Ook, O). Since O ∈ φ(Dk) and Ook ∈ CB+, for
every i(1 ≤ i ≤ i) such that xi % c appears in Dk, O[i] % c and Ook[i] % c. This

Learning Taxonomic Relation by Case-based Reasoning 193

means that lcgc(Ook[i], O[i]) % c. Thus, lcgc(Ook[i], Ong[i]) % c and Ong[i] % c if
xi % c appears in Dk. This means Ong ∈ φ(Dk) and thus Ong ∈ R and it leads
to contradiction. Therefore, O �∈ φ(Dk).

Since every time the above O is found, we add O to CB+ at Step 2 in
FindCCB(δ, ε), the number of unsatisfied Dk is reduced at least 1. Therefore,
the above situation happens at most |DNF (R)|.
Proof of Lemma 22 Every time the above O finds, we search
pminNG(O, Ook). Let Opmin = pminNG(O, Ook). Then, Opmin is in
PNN(Ook,R). If Opmin were in CB− already, O could not be a negative counter
example.

Since we add Opmin to CB− at Step 3b in FindCCB(δ, ε), the number of un-
added PNN(Ook,R) is reduced at least 1. Since |PNN(Ook,R)| ≤ |CNF (R)|
by Lemma 13, the above situation happens at most |CNF (R)| times for each
Ook.

Proof of Theorem 23 We only need to get at most
1
ε

ln
1
δ

examples according
to P to check whether a counter example exists or not, in order to satisfy the
accuracy condition. Since the number of counter examples (positive or negative)
is at most |DNF (R)| · (1 + |CNF (R)|) by Lemma 21 and Lemma 22, we only

need to get at most (
1
ε

ln
1
δ
) · |DNF (R)| · (1 + |CNF (R)|) samples as a total.

Let CB be 〈CB+, CB−〉. For each negative counter example O and for every
Ook such that O ∈ R〈{Ook},CB−〉, we compute an element, Opmin, in a pseudo
nearest reduced negative subset w.r.t. Ook by pminNG(O, Ook).

Since the number of elements in a representation set of O↓l
Ook

for each l such
that class(O[l]) �= class(Ook[l]) is at most width(T), the number of possible
cases checked for one iteration in pminNG(O, Ook) is at most n · width(T).

Since the number of iteration in pminNG(O, Ook) is at most n · height(T),
we will make a membership query at most n2 ·width(T) ·height(T) times to find
Opmin. Since the number of negative counter examples is at most |CNF (R)| ·
|DNF (R)|, we need at most n2 · width(T) · heght(T) · |CNF (R)| · |DNF (R)|
membership queries.

Proof of Theorem 24 Let CB be 〈CB+, CB−〉. Since we can guarantee that
for every Ook ∈ CB+, Ook �∈ R〈CB+−{Ook},CB−〉, there is no subset CB′+ of CB+

such that RCB′ = R where CB′ = 〈CB′+, CB−〉 by Lemma 20.
If we can find all the PNN(Ook,R) by using pminNG(c, Ook), then we

can get NN(Ook,R) by choosing Ong ∈ PNN(Ook,R) such that there is no
O′

ng such that O′
ng ∈ PNN(Ook,R) and lcgc(O′

ng, Ook) ≺ lcgc(Ong, Ook). At
the output step in FindCCB(δ, ε), we perform such a selection. Therefore, if
R = RCB then, CB− =

⋃
Ook∈CB+ NN(Ook, CB−) and this is a minimal set of

negative cases w.r.t. CB+ and R by Lemma 26.

����������	� �
���	
	 �� ���		
����
�

�����
���	 ��� ������
 ��
��
�
	

�
� ���
	
�
 ����	

������ ��	
�
�

���������	
� �
�������� �������
���� �
� �� !� "#!�$ �
�������� %��&
�	

����������	�
��
���
���������
��

��������� �� '
���'�
� ������������ �	�
����
� �(� �����
)�*
��
�
���
� �
��
� ')
���+'
��
�
)�
���(&� ,��(+���� &
��) ')
����� ��)�-�

���������
..�

'(��� ,� �
 �
� ��)	
� �
���� �(
� (
)� �
�
)) .
�/
���)�)�
����� .�
�)�&�� �����
�� ,� ����	 �(� ��(
��
�
�
)�
�����

)�
���(& ��� � ����	 ����
��� �
-��� .�
.������
� �(� .�
�)�&
��
�(�)�
���� ���

''
���� 0(� �
)���
� ��.����
�)	
� -�
,� 1�
�������
2����� �(� �
&.)� ��*�3�
�� �(� (���
��
&
� ���
� �
��� �� �(� &
��) ')
��
,(�'(,� �����&��� �
� �(� '
�� �(
� �(� �
��(� �
���� ��
 �
��
&)	
��
,� �

)�
� ���'��
�� �� �(�� ���'��� (
, �(� ���
� (���
��
& '
�
�� ����&
��� ��
&
 ����� �
&.)�
�� �(�� �(
, (
, �(�
�
)	��� '
�
��
..)���
..�
��&
��)	 �� �(� &
�� ��
)����' �'��
��
 �(
� �(� �
���� ��
��-�
,�� 4�.���&���� �(
, �(
�
��
�
)	��� '
� .����'� �(� ��(
��
�

� ��'���
� ����
)�
���(&� �
��)	
''��
��)	 ���� �� �(� ���
� (���
��
&
�� ����&
��� ��
&
 �
&.)��

� �������	�
��

� �	
 �
����� �� ������������	 �
��	�	� �	��	 �
 ����� �� �	�� ���
�� �	
 ����
�� � �
��	
� �� �� ����������
 � ����� ������������ �� �	���	�
� ��� ����� ��

��

�� �
�� �� �������
� � ������
��� �� � ������� ���� �������
� �� ����� ���
��� �	

 �
�
����!������ �� ���
"
���� ���
 �� � 	����	
��� � �� �	
 �	���
 �� ������� �
���� �� �� �������
 � ��� � ����� ���
� � �	
� ������� ��������� �� �	
 ����	�
����
� ������������" ���	 �	�� �	
 	����	
��� ����
����
� � ����� ���
� � �" �	��	
�� �������� ���� �	
 #����
��$ ����� ���
� �� %	��
 �
 ����� ���
 �� ������!
 �	��
���

���� ���
� �� �� ���� �	

��������
���� �� �	
 �������� �����
 ��
�� �
�
� �� ����� ��� ��" �� &�
� ��!
" �	��	 �
 ��� �
����
 ��� �	�� ������!
� �
�
���
� ������!
� �	

��������
���� ���	�� � ��
�����
� ���
� ����� � �
� ��
���
������� �'������
 	����	
�
�"�

(��� ����� �	����
� �� ������&������ �������	�� ��'
 ���������
 �������

�
�� �	
 �
	�'��� �� �	
 �����
� �������	��� ���������� �� �� �������

� �	�� �	

�
��������
 �� �	
 �
���
� �� '
�� �����
�� �� ��
 �
��� ���
 ����� ���
�
��

�����
�
 �	�
����	� ���
�
��)���
*�
����� ���	 ������ �
�� �� �
 �
���������
��� ��� ��� '
�� �
� ���
������ �
������ �����
���

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 1 9 4- 2 0 7 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

�� �� ������� �� 	
��� ���
�� ������� ������	���
��������� ��� ����������
��
 ����
��� � ������ �� ������������ ���
���� ���� ���� ��������� ���	� �����	�
��� ����	��� �������� ����� �

 ������
� ����
��� �� �
������
 �

������ 	
� �

�����
�
����� �����
��	��� ���
���� ���� ���� ��������� ��� ��	����� �����

������� �� � ��������� ���
���� �!!� !" � ���
����� �����
 ������#� �$ �� ��

 ��
��� ����������
� �������
��
��
�� �!$ ��� ����� %������� 	
����&��� �!'� (�

)�*� ��� +*����
� ����
�� ������ ���������	�
 	���������� �� ��� ���
� ��
������
� ����� ����� �� 	
����&	����� �

������� ���	� ��
� ��� �

 ������
�
�����
��
 ����
���� *���
�������
 ���� ������������ ����� �����
��	��� ���
���� 	��
�� ���� �� ��,�	���
 � ���������������� ������	����� -��
������
 �
��� �� 	���
������� �� � ������ ��� �������� �� ���	� �� �� �� ���	����� �� �		�����
� ��
������
�� -�� ������� ����&� �� �����
��	��� ���
���� �� ����� ���
��� �� �����	�
��� �������� �� �
������
 �

������ �� � ���	�&	 �	������ ��	� ������ ����
������	��� ���
����. ����� ������� ������	# �� ����� ��������	� �� ����������
�� ���
������
 �

������ ��� ���
������
 ����
�� ���	� 	��������� �� ��� ���
������
 ����� �� ��� ������� �� � ����	�
 	
����&	����� ������
� ����� ���������� ���
��#�����

�� /�	����� " ��� $� �� ������� 	�����������

� �Æ	���� ������������ ���
�
���� ���� �����	� ��� �������� �� 	
����&	����� �

������� ���� &���� ����������

��
��
��� �� /�	���� " �� ������ ���� ��� �������
 ��� ����� �� ��� �������� ���
�������� �� #���� ��� 0������� ��� ����	���
�����
�1����� ����� �� ����������
���� ���� ������	�
 ������ �� /�	���� $ �� ������ ���� ���
������ &��� ��� ������
��
 ��� ����� ������1��
 ���������� �� ��� ����
 	
��� ���� ����
���� �������

��� ����� ���� ��� ���� �� �� #����� ��� 0������� ��� ����	���
�����
�1�����
����� �� ���� ����������� %��� ���
���� ������ �� ��� �����
��� �� ����� ����� ��
��� ����
 	
���� -��� 2���� �������� �� ����
 	
��� ���
������
 ����
�� 	�����
��� ����� ��	� ������
� ����� ���� �		��� �� ��� ����
 	
����

�� /�	���� 3� �� ������ ��� ���	� ����� �����
��� ��� ��� 	��� ���� ��� ���
��
���
�� �� � ������
� ����� ���	���� ��� ��� ������	�� ���
������� �� ��� ����
���� ������������� /���
�� ������
� ��� 	�����
� ������� �� �����
��	��� ���
����
������ �� �� �� /�	���� 4� �� ���	��� ��� ��� ����� �����
��� 	�� �� ���������
���� �� ����
��
� ����
�� 5� 	�� ���� ���
� ��� ���
���� �����������
� ���
��������� ���
���� 5� ������� ����������� ���� ����	��� ����� ���� ������� ���
��	#
����� #���
��
� �� ��� ���
��� �� 	�� ���

 ������ ����
� �		����� ����
���

6�� �� 	
����� ���� ���������
 �����
�� 6�� �� �� ���� &���� ����
 	
��� 7
����� � ��� �� ����
��
� ����������� 8�� ������	�� �� 	��
� 	������ �

 ��	�����
����� ���� �
��� ������ � � �� �� ���� � ���������� ��� ���� ������	�� � ��
	
���
���
� �� � 	
����&	����� ����
�� ��
���� �� �� ���#����� ������� ���� ���
-��
�����
�1����� ����� ���� �� � ���� �����	� �� ���� ����
�� ����	� �� ����
�� ������1�� �� ���� 	��� 9

� �
�
������ ������ ����� �����
��� �� �� ��� 1�������

��� ���	����� :���� � &���� ����
� � 	��������
 ��
 ����������� �����
���
����� �		�����
 �� ���� ��� ��� ������	�
 ��� ����
�� ����� ���� �� � �� ���� 9
�

�

�
�������
������ ��� �� �� ��������� �� ������
���� �������
�����
�1����� �����

	 ����	� �� ���

� ���� �� ������1�� ��� ������	�
 ����� � ����	� �� ��� ����

�� ������� ��� ������1� ����
 ��� ����
�� �����
���� ���� ������

1 9 5A v e rage - C ase A nalysis o f C lassif ic at io n A lgo rit hms

� ��������	�
��� ����� ��
��
�� ��������� �����

������� ��	�
� �	�� 	 �
��� ����� ��	�� �� 	�� 	 �	���� �
�� �� ��� �����
��	�� ��
� ��� �	��
���	� ��	��
�� �
	� �� ��� ��	��
�� 	����
���� ��� ���	�
��
��
�
��
�
���� �
�� �� ����
��� ����� ��������
� � � �� �	� 	 ���� ��� ���
���
� �����	�
�	�
�� ����� � �!

�� ������� �� ��� �����
�! ��	��
�� �������
� �� �!� "���
� ��	
 	 �	���� 	 �������� �� � �� �!�� ���� �	�� ��������
�

����� 	� ���
�
�	� ����� �	��
 �!� ������� ��	�
� ��� ��� ����������
���
����� �	�����

�� ��� ����
��� ���
�
�	� ����� �	��� �

�
� �

�
� � � � � �

�
� "� �	�� ���

��� �� ����������
� ���
 ��

�
� �	�� ���

�� �	���
 �	�
�� �
� �
���
���
��

�� �����	�
�	�
�� ����� �	���
�
� ���� 	�� ����
��� �	����� 	 	�� ���� ��� ���
�������� ����	
���
� ��� ���!� "�

��
�
�� ��
� �
���
���
�� � � ��

�
!�
�����!�

"�
���� ������ ���� �� ��� ����������

�� ���
�
�	� ����� �	�� �� �

�
�� �	��

�	
��� ��	�� �����	�
�	�
�� ����� �	���� 	������� ��� �	#��
�� �� ����
� �
���� ��

���� 	 ������� �����	�
�	�
�� ������ $� ��� ����� �	��� ���� ����������

��
���
�
�	� ����� �	�� �

�

�� 	���
���� 	 �	���� �
�� ���� ����� ������
�� �� ���

�	���� �
�� 	�� ����� �	�����!
�
��

��
� ���� �	��� ��
�� �� ��
�� ��	� ����

% ��	��
�� 	����
��� �������� 	 ��	���
� ��� ������
��� ����� ��	�� �� 	��
����� �� ���� ��������
� ��

�

�� ���
�
�	� �����
 ��� ������	�
�� ��� ����	���

��	����� ���
�
�	� �����
� ��!� &�
� 	����� ��	� 	�� ����������
� ��

��

����
�	� ���
�
�	� �����
 	�� �'�	��� �
���� �� �� ����� �� ��� ��	����� ���� ��

�

�	� �� ���	��� 	�
�
�
��� ��	
� ���� ��

�
 ��� ��� �� ����������

�� ���
�
�	�

�����
! ����� ��
���� �
���
���
��� (����'������� � � ��
�
!�
�����! ������� ���

�����	�
�	�
�� ����� �� ��� ��	��
�� 	����
���
��� ��� �������� ���
�
�	� �����
�� ��� �������� ��������
�
�
� "���
� �	� '�	��
�� � � ��

�
!�
�����!� ����
�

�	� 	��� '�	��
�� ��� �
���
���
��
�
�� ������� ��� �����	�
�	�
�� ����� �� ���
��������
� �������� �� ��� ��	�����

"� �	� ��	� � � ��
�
!�
�����! 	�)� �����	�
�	�
�� ����� � ���
�
�	� �����!*�

���
���
�
�� �� ��� 	�	���
�
�
��
� 	 �
���
��� ����
�� �� ��� 	�	���
� �
��
������
� +,-.!
� ��	� 	���
�	�
�� �� /	���0 ����
���
��)� �����	�
�	�
�� �����
� ���
�
�	� �����! 1 � ���
�
�	� ����� � �����	�
�	�
�� �����!� �����	�
�	�
��
�����!
 ����	�
�	�
�� �����	��*� 2��� ��	� � ���
�
�	� ����� � �����	�
�	�
��
�����!
� �
���� ��� �
���
	� �
���
���
��� �	�� ��	���� �	� �� ��	��
��� ����
������ �� �����������3 ��� ��	��� �� ��� �	���� �	����
��
� �3 ��
� ��	�� �� 	
�
���
	� �
���
���
���! "� �	�
��������)� �����	�
�	�
�� �����!*� ��� ��
��
�
��� �'�	�
��� 	� ��� �
�����	� �� ����� �	���
� ��� ��
� �
�����	� ������� ���
����� � ��� ��	��
�� �� ��� ����������
� ��
�
��
���� 	� ����� �	�� �� �� 4��
�� ��
 ���� 	� ��� 	�	���
�
� ���� ���	
��

4�� ��
�

�� 	 ��������
� ��	
� ���� ��

�
	� �	���� ����� ��
���� �
���
���

�
��� &� �'�	�
�� ,�
� ���� ���	�� ��� ����
�
�� �� ��
�
� �����
� �'�	�
�� 5�

� ��������� ��� ������	�
�� ��
�����	�
�� ���� 	�� ����
��� ����� �	��� �� &�
�'�	�
�� 6�
� 	���� /	���0 ����� � ����!
� ��� �
�����	� �� ����� �	���
� ��� &�
����
��� ��� ����	�
�
�� �� ��	

�� 	 ��������
�

�� ����� �	�� �
��� ��	

��
	� �	���� ����� ��
���� �
���
���
�� ���� ���

1 9 6 T o bias S c he f f e r

������
�
���������

� ����������� � �� � � ����� ���

�

�
������� � ������ � �� � � �����	� ���

�

�
�

 ����� � ������ � �� � � ������������

 ����� � ��� � �����
	� ���

��	
��
��� ��� �� ��� ����������
	 ������ � ������ � ������� ��� �
 �	�������
�

	� �������
	 ��� ��
�	 �����
 ����� � ��� � ����� �� � 	
�������	�

	���	� ���
� ��
�	 �������	� �� �	 ������
	 �

�
������ � ������ � �� � � �����	� � � ���

�

�

 ����� � ������ � �� � � ������������

 ����� � ��� � �����
	� � � �!�

�
 ����� � ��� � ����� �

�

 ����� � ������ � �� � � ������������	� ���

"
���	�	� ������
	� � �	� � ��
����	 ������
	 # $	 ���� ������
	� ��
���
 ����� ����� ���	 ��� ���� ���
� � �� ����	� ��� ��%���
�� ���
� � �� �
���	��
�& ��� ��	
���� ����������
	 ���
� �� ����� �� �'���(���

������
�

��������� �

�
��'���(����������	��
�'���(����������	�

�#�

)� ���� 	
� *
�	� � �
����
	 ���� ���	��+�� ������
�

���������� ��� �����

�,%�
��� ��	���������
	 ���
�
* � �&%
������ *�
� �� ���� ��%���
�� ���
� ����
� *
� � ����	 ����	�	� %�
���� ��
� �� ������
	 # �%�
�+�� ��� �
���� ���
� ����
*
� ��� ����	 ����	�	� %�
���� ������ ���	 � �
���-
��� �
�	� ���� �
��� *
�
��� %
������ ����	�	� %�
����� .�� ������
	�� �	*
�����
	
* ������� ��/�� ����
%
������

� �������� 	
 ��
������� ��������

$	 ���� ��
��
	� �� ������ ���� ��� ����	��
�	 �� �����	���� �
 +	� ��� �&-
%
������ �	 �� ���� ��	������ ��� ��%���
�� ���
� �����/�	� ���� �& �����	� ��
��	�
�� 0	 ���
���� ��	�� �� �
 	
� ������� ��� ��%���
�� ���
� ����
* ���
�������	� �&%
������ �
 �� /	
�	 ��
 ��� ����	�� �
�� 	
� ���� �
 �� �	�
/��
��*
�� ��� �	��&���
�	 �� �%%�����)�
�	 %����
� �
�� ��� �������	� ��%���-

�� ���
� ���� �	� ��� �������	� ��	���������
	 ���
� *�
� ��� ����
����
* ���
�
����� �	� ��� 	�����
* �&%
������ .�� �	��&��� �� � ���%��+
���
	
* �	 �	��&-
��� %�
%
��� �& �
��1�� �	� 2
�
���� '�3(4�� �� +��� �/��
� �
� ��� �������	�

1 9 7A v e rage - C ase A nalysis o f C lassif ic at io n A lgo rit hms

��������� ���	� ��
� 	�
��
������
 ��
 ��� �� ������
�� ��
�	�
 ������

��
�������
 ��
	��
�� �
 ����

��� ��������� ���	� ��
� 	� � ���
�� ���	
����� ��
�
���������
�	� ���	� � ��

	������ ��
�� ���	���� ���
����
�	� ���� ��� ��� ����
 ��������� ���	� ��
� ��
�� �� � �� �	 ���	
����� �������� �� ��������� ���	� ����� �� �	���
��� �� ��
 ��
����
�� ����������
 ������
�	�
��

�� ��������� ���	� ��
�� 	�
�	 	� �	��
���	
����� ��� ����������
 ����� ��� �	

���	�
��� �
�� �

	

����� �	�������
� �
�
�����

���� ����� !
�

�����
� ����� ����� � "	� �� ��� ����	#���
�
��

������
��
 �	 ���	
����� ������ �� ���	� 	� ����
��� � ��
�

����
� ���� �

����� �� � "	
�
��

�� ���
	
��� 	�����
���� �� �	� ���� ���	
����� ����
���	� ��
�� 	� � ��	� ���� � � ��
 �� �	� �		� �

�� �������� �� �	�� ��
����

$� 	����
	 ��
������
�� �#���
��
��� ���	� ��#���
�� 	��� ��� ������� 	�
��� �
�� ���	
�����
��
 ���������
�� ��������� ���	� ��
��� �� � �� ���
	����

�� ���	
����� �
��

�� ������� ��
���� �%&��
�	� ' � (���� �� ������
��
�������
	 �����
��� ��
���� ���	
����� ��
� �&����� ����� ��������� ���	� �

����	�� ��� ���	
����� ��
� �&���
��� ���	� ��
�� � ���� �� �#��
�� �&��� ���	�
��	������
� 	� ���	���
 ��� �)� ��*�����
� %&��
�	� ' ����
��
 ��� ���	
����� ��
��
�
��� ���	� � ���
�	����
	
�
���� 	����� �� �
���
�� �����
� 	� ���	
�����
��
� ���	� ��
� � ��	�
 ���
�� ���	
����� �� �� ���
� ������

	
��
����
�������
 ��	���� � ����
���� ��
	 %&��
�	� +�

������ ����� !

�
�

��� � ���� ! ������ �� �'

!

�
�

�� ���� ! ��������� 	����� �� �+

��
 ��

� ! ��
�������
���� � ��
�� ��
 	� ���	
����� �� �� ����� �����

�� ����
 ��������� ���	� ��
�� "	
�
��
 ��

� �� � ����	� �������� ������� 	���

�� ������ ���� � �� ,#�� �������
�� ������ � �
���� �	� ����� ��

� �������
�� � ����	� ��������� $� 	����
	 ��
������
�� ������
��
 �� ��� ����
����
���	
����� ��
�
��� ���	� ��
� � �� �����
�� �� ��� � �� ,��
 ���
	����
�� ������

��
 �� ���� �� ��

� �
�� ��������� ���	� ���������
 ���	
����� 	� �� �%&��
�	�
-. � / ���	
�����
��
 �	�� �	
 ��� �� ��

� ��� � ���	 ��	������
� 	� ���	���
 ���
�%&��
�	� -- � $� %&��
�	� -0� �� ���
	����
�� ���������
� 	� ���

� ��)���
���
��
 �� 	� ����
�
��� ���� ���	
����� �� ��

� ��� � ������ 	� �

�
	� ���	���
 ���

�
�� ������� ������
��� �
 ����	� �%&��
�	� -1 � $� %&��
�	� -2� �� ���
	����

�� ����
 ��������� ���	� � ���� �� %&��
�	� -3� �� ������ ����
 ��
�� �	�4��
�	�
����� ���� � ! ��� ����� �

� ���� ! ���������

! � ���� ! �������� �� � ��

� � ��� � ��

� �-.

5� ���� ! �������� �� �� ��

� �-� � ��� � ��

�

! � ���� ! �������� �� � ��

� � ��� � ��

� �--

!
�
�

�
�
��� ! ��

������� �� � ��

� � ��
�

� � !

�
� ��� � ��

� � ��
�

� � !
 �-0

1 9 8 T o bias S c he f f e r

�
�
�

�

�
� ��� � ��

� � ��
�

� � � �� ����

�
�
�

�
�

�

�
�
�
�� � ��

� � ��
�

� � � �
������� � �

�
� ������ � ������ ����

�
�
�

�
�

�

�
� ��� � ��

�
������ � �����

�
���

�
� � �

���� � ��

�
� ����� � �

�
� ������ � ������ ����

�	
��
��
�� �����
�� ��
��� �����
�� � �
 �
� �����
�� ���

	�����
�

�������

�

�
�

��
�

�
�

�

�
�
�
���

� � � �
���� � ��

� � ����� � �
�

����

� ��� � ��

� ������ � ����� ������ � ������
������

�
��

�����
�� ���� ��
 �����
 �� ��
 �
� ��
��
�
��
���� �
�
�
!
�� �	����
�
�
��

�
"

�� �� �
!
 � ��
� ��
� #���� ��

� ��
� �
� $�
� ��� $
�
�$ ��

����� �	����
�
�
� #���� ��

� ��
� �
� ������ 	% �
�
���

�
� � �

���� � ��

�

�
�

�
�
���

�
� � �

���� � ��

�

�
��� � ��% ��� �
 ��� � �
� ���� � � �

�
���

�
� � �

���� �
��

�
� ����� � �

�

� �������� ��� � ���

�����
�� �� ��
�
&
� ��

'�
����
�� �� ����
�

�� (�
 $
��
�	
�����
�

�������
��� ��
��
����
 �� ��
 ������
�� �)�� �����
�� �� ��#
� �� ���� �����
�� �) ��
�����
�� �*
� ��
�� �
 ��
 ��
 �""�
+
��
�� � ��� �

�
���

�
� � �

���� � ��

�
� ����� �

�
�
� �
� ��
�
���
 $
�
��
�
$ ��
��
 	 "	 �����
�� ���

�

������ � � ��������� � � ��)�

�

� �
�

�
�

�

�
� � ��� � ��

� ������ � ����

� ������ � ������
�������� � � ��*�

� � �

�� �
�

� ��� � ��

�
������ � ����� ������ � ������
��������

�
��

����

,��"
�
�� �����
��� �� ��$ �� ��$ ����
�� ���� ��

��
�
��
����
� ��+-

��
$ "	 ��
 "
���
� $
���
"��
�� ��
+
� ��
 ���

����� �
 �"��
� �����
��
./�

	�����
�

�������

�

�
� �
	

�
� ��� � ��

�
������ � �����0���1���
������� ��� 	

�
� ��� � ��

�
������ � �����0���1���
��������

�./�

1 9 9A v e rage - C ase A nalysis o f C lassif ic at io n A lgo rit hms

��� �� ��� �	
��� �
� �	�� ������� ����� � ��� � ��
� ������ � ����� �
����
����

�� ����
 ���� ����� �	�� �� ���� �� ��
� �
�� ��
����
���� �� �� 	

����� 	

����� ������
	� ����� �	��� �
��� 	�� ���� �	��
����
����� �
��� ���� �����
�	��� 	�� ���� ���
��������� 	�����	�� ����� �
�� 	�� ����
�� ����������� ���
!������� �� ���� ������
	� ������������� �
��� ���� ����� �	���
��������� �
�
������� ������� �
�

 ��	�����
�� �"��� �	

 ����� �	�� � �

��� �� �� ���

	�� 	���	�� ���� �
�� ������� �� #$�	���� %�� #	

 �" �
���
����
���� ��
���
	� ������
	� ����� �	�� �
	� �� �� �����" !������� �� �
� ������	� ������������
	&�� �'� ��� �� 	����� �
	� �
� ������
	� ����� �	��� �" ��� �� ����
����
����
	�� ����������� ����� �	�
����
������� ���� ����� ����
 	� ���
����� �	����� ��
�
�� ��
����� (���	���� � �

�
�����

������������ �
�

�����
� ��������������)�� ��

	� $�	���"� �
�

	�
� �
	� ��
����
���� ��
��� 	� ����� �" ���� �
	� � �
�

�	��� ���
����
���� � ���
 ���� � � 	 ������ �" ��

� � (�� 	�� ��� ���������
��	�� �� �"���	����
���� �
������� ��
	� ����� �
��

	�
� 	� �� #$�	���� *+�
)��� 	!	�� �
	� �
� ������
	� ����� �!���� �
� ���� ������ �� !������� �� �
�
������	� ������������ �#$�	���� **��

� ��� � ��
� ������ � ���� �

�
��

� ����� � ��������������
����� �*+�

�
�
��

�
��

����

	&����'����

�
�
�������

�����

�**�

,
	�
	�� �� 	

����� �� "	�- #$�	����� *. 	�� ** $�	���"� �
� ����
���
!����	��/	���� ����� �" ��� "�� 	 !���� ������� �� ����� �" �
��� $�	�������0 �
�
������ �"
����
���� �� �����
�	�� �� ��
�

	� ����
	��� �	���� ��
��1
������� �
� �	���� ��/� � ��
�

 �� ������� 	�� �
�
����!�	� �" ����� �	���
�� ��� ��������)��� �
	�� "�� #$�	����� *. �� !��� �� �
� ����
��� ����� ����� ��
�� �� ��� ��
���	�� �� 	
��	��� ��� �
� ��	���� 	�� ��������� ����� �� ��� �� 	���
���
	��/� �
	� �� 	�� ��� �	����! 	���� �����
 �� �
� ����� �	�� "�� 	
�	�� �"
�������� ��������� 2��3�
� �� �
� ��������� ����������
� 	����������� #$�	1
����� *. 	�� *+ $�	���"� �	� ����
��� !����	��/	���� ����� �" 	� ������
	� �����
������/��!
����
���� ��� � �����
����� ����� �������� �������� ,
�� ���� �
�
�	���� ��/� � 	�� ���� 	�� !����� �� �� ���������� �� ��������� �
��� �� �
�
������	� ���
���� �� �
� 4
����5 ����� �
� 	
��	� ����� �	�� ����� ��������	���
!���� �
� ������� ��������
������� ��
	� ��������� �
� �
���� ������� �
	�
!������ �
� !����	��/	���� ������ 	�� �
����� 	��� �
� ����
��� !����	��/	����
������

� �������� 	

���� �
����
��

6� ����� �� 	���� �
� 	�	������ �
�
����!�	� �" ����� �	��� �������
	� �� ��
������ ��� �� ��������� ������� �
�� �
� �	�!�� �� 	 �	������ ��	�� 7����	�
"��
���� ���� 	��������� �� �
���!
 �	 	�� �
� ����	�
�� 	�� !������� �� �
�
���"��� ������������� (�� �	

 �	�!�� "��
���� �	 �
� �	�!�� ������������
	���
�

2 0 0 T o bias S c he f f e r

�� ���� �

��� ���� ����	
 � ���
 ���������� ��� �� ������� ��� ������� ���������

���� ��� ���� � ����������� ����� ������� �� �� ���� ������� � ������� � � � ��
��� �������� ����������� ��� ������ �������� ���� ������� ��� ��� ������ ��� �����
����� ��� ��� ��������� ��� ���� � ��!����� ��� ������� ����� ����� �� ��������
��� �������� ����������� ����� ������� ���� ������� �� ������� ��� �������� ���
���������� ���������� �����������

"��� ������ �������� �� ����� ������ ������ ������ ������������ ����� �		
������ ���� ����� ��������� 	��
���� ��	
 	��
���� ����� �		� #��� � ���	 ��
��� ������� ������������ �� ������ �����$ ���� ��� �! ����� ��������� ����� ���
�� ��������� �� "%������ &'$ ����� �� (��� "%������ &
 �������� ���� ��� ���
)�� ������� � ������� ��������� ���� ��� ���� �� ��� ��� ��� ��
 ��� ������
����������

���� ����
���	�����	 �&'	

� �

 �
�

	 � ��
 � ��
� ����
	
 ���	�*
��+��		�
���� ��		 �
� �

	 � ��
 � ��
� ����
	
 ���	�*
��+��		�
���� ��	�

� ���	���

����� � ��
 � ��
� ����
	
 ���	

�

�

�
��
	��	

�*
���+���	

�
	

������

�����

�&,	

-� ����� �� ������� ������ "%������ &' �� ���� �� ����������� ��� ������
���� � � �� �� � ���� ��� ������� �������� � ��� ���� &� ��������� �������

��� �� ������� � ��� ��� � ��� ���� ���� &� ���� ���� ���� �� ����� �� ��������
���� ��� ����� ������ .����$ &��� ��������� ���� ���������� �������� ����� ������
���� ���� ��� ���� ���� ���� /���� �� �� �������� �� ��� ������� ������������$
��������� ��� ����� ����� ������ ��������� ���� ��� ��� �
� �� �� &��� ���������
���� ����������� � ������ � �� ��������� �������� �� ��� �������� ������������
�*&���� �� +� ��� �� ������� ��� �� ��� ������� �� ��������� ������������ �� ���0
� ���� � ������� &� ���� � �������� ����� ����� ����� �� �������� �� ��� �����
���� ����)�� ������ ���� � � � � ���	 �� �������� �� ��*&

���� �� +	
�� �� � ������ ����

���������� �� "%������ &1�

� ��
 ���� � � � � ���		

����

��

�

&����

�

&

�
��
	 �&1	

2���� � ������ �$ ��� ������ ������ ����� ���� �� (��� ��� ��� ���� ��� ���� ����

������� �� ��� ������ �� ���������3

���

�� �
�&
�� .����$ �� ��� ����������4�

��� ������������ ���� ������� ���� ��� �� ������
 ����������� �� "%������ &5�)��
��������� �� ���� �%������ �� ���� �� ����� �� � ��������� �� �������� �� ���� ���
� ������� &� ���� ������ �� ����� �� �
 ������ �����
	 �� �������� �� ���� ���
� ��� �� ����� �� � � �
 �� �������� �� ���� ���� � 6 � ������� �$ �� �� �����
�� &��� � �
 �� �������� �� ���� ��� � ������ ����� �	 ��� ��� ��������� ����� ��
�� �&���� �
	 �� �������� �� ���� ���� �6� ������� ��)�� ������ &� �� ���� ��
������� ����� ����� ���� �������� ������� �� ������ ��� ���� ������)�� ���������
�� "%������ &7 �� ����$ �� ��� ���� ���� ���$ ��� ��������� ��� ������������ ����

2 0 1A v e rage - C ase A nalysis o f C lassif ic at io n A lgo rit hms

��������� 	
�� ��� � �
���
����
������� ���� ���������
��� ����� ������ �� ����

��� ����� ��� ��� ��� �
���

� ��� ��������� ��� ������������ 	��
 �����������
�

�

��
��	���� ��� �� ��
�� ����� ����� ��� ���������

�
�
� �

�

��

����� � � � � � ���� � ���
�
� �

�� ��

��

�������� � � � � ���
�

���

�

�
�

�
� �

�� ���� ��

��

�������� � � � � ���
�

	
��� �
�
� �

�

��

������� �
����
��	
� �! ��� � �

���
� ���

�

�
�! ��� � �

�

�
�! ��� � �

���
� �

" ��
��	���

�#�

$����� ���� ��� ��������� ��
	��
 �%�� �� ���
����
���� 	� &������� �' (����
�
� ������������ �� �����
����(�����)� �
�� ��������� 	� ������ ��������� �*
�
� �� �
��� � � � � ����� �� ��������� �� &������� ��� ��� �
� �
��� � � � � ����� ��
&������� �+�

�
����� �

�

�
� �� �
��� � � � � ������
� �
��� � � � � �����
�'�

,������� 	� ��� �������� �
� �%������
���� ��� ������� � ��� ���(�� ���������
��� ��������(����� ���� �� &������� �-�

������
�
	�������� ��
�-�

�

�

��
�

	 �
	
 � ��
� ��
	
� � �����.���/
���
����� ���

	 �
	
 � ��
� ��
	
� � �����.���/
���
������

�
� �
��� � � � � �����

�

�
	
 � ��
� ��
	
� � ���� �� ��������� �� &������� �0� �
���� �� &������� ���

��� �
� �
��� � � � � ����� �� &������� �+� 1� ��� �������� &������� �- ������ ��
�� ������ ���� �� �
� �������� ������������� �
� ������ ���� ��� �
� ������� ��
���������� � ��� ��

���� � � ��)� �
�� ����� �
� ���(�� �������� ����(�� ��� ����� ����� �� ����

��������� 	
��
 ��� �� ������(���
�� �� �
�
����
����� 2
�
����
���� ������3
(���
�� �� ���������* � �������� ���	�
����
���� 	��� ����(� ���
 �� �
���
��������� �
� ������� ����� �����
��� �
� ����� $����� �
� ������������ �� �����
����� �� (������� �� �
� �������� ������������ �� (���� �� &������� 4"�

����� ��� � �

�
�

�
� ��
�

4"�

1� ��� �������� �
� �%������ ��������(����� �� &������� 4� �� ��������(
 ��
&������� �" �� �
� �������� �������������

������
�
	�������� ��
4��

2 0 2 T o bias S c he f f e r

�

�
�
��

�
� ��� � ��

�
������ � ����� ������ � �������� �

�
� ������

�
	�

�
�

�
�
� ��� � ��

�
������ � ����� ������ � �������� �

�
� ������	�

� ��� � ��

�
������ � ���� �� 	�
��
� �������� ��� ��� �� ����� �������

��������� �� ��� � !������ ��� ����� ���� �" � #������ ��������#�� $� ��� �%!��&
�'����(�� ���� �)) *��#��� "�������� ���� � ��#�
��� �����
���� ��� �##����
'���# �#����� �"
������ ��� + �����
����� ,�	��� ����� ��� �
���	�� �����
�����	��'� "�� �## '���# �#������ ,�	��� � ��'!���� ����������# ��� '�������
����� ����� ����

�
� �" ��!������� ���� #���� �'!�����# ������ -� ��� ��� ���� ���

!�������� ����� ����� .� ��� '������� ����� "���#� �#���#��
/��� ���� ��� �
���	�� ����� �����	��'� �" '���# �#����� �����	� � ���

����#� 0� #��	 �� ��� ����� �����	��' ����� ��������(���������	 ��� ��'
�� �"
��!������� ��������� ��� ����#���	 ����� ����� 0� �� ��� ����#�
��� �����
����(
��� ����� �" ��!������� ����
��� #�� ����� ����� ��������� ��� ��� ����#���	
����� ����������

0
0 0.2 0.4 0.6 0.8 1

Hypotheses contain one attribute
2 attributes
3 attributes
4 attributes
5 attributes
6 attributes

���� �� ����� �������	
� ���
��
�� ����� ����	�� ����
	� 	�������
� ��� � � � �� ��
�

��
 �	��
� �������� �
����
� 	�������
� ��� ��� ��� ��
 ������������� 	�

��	� �� ��
 ����

���

��
��� ��
 �	��	��
 ��
� ����
	�
��

� �������� 	
��� ���
������ 	�
����

$� 	�����#(��� ����� �����	��' �� ��� ������ 1���
��(�� ��� ����'��� ���
����� �����	��' "��' ��� ��'!#� ��� ���� �!!#� ��� ���#���� �!!��%�'���#� "��
��
������ ���	�� ������
������� 0� �� ����'��� �"
������ �� ��� ��� �'!�����#
�������!���
������ ���� ������
����� �" �'!�����# ����� ����� �" ��!������� ��
�� ���� ���!��� �� ��� ��'!#� �� ����� �� ��� ������ ���� �� �� ����� ��� �
��'!#� � �� �
��#�
#�� -� ��� �
����
������
� ��!�����#� ������	 ��!�������

2 0 3A v e rage - C ase A nalysis o f C lassif ic at io n A lgo rit hms

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6

er
ro

r

number of attributes

Predicted learning curve
Learning curve measured in simulation

���� �� ��� �����	�
 ���
�� �������� ����� ��������	��� ��� ��������
������ ���� ���
���
�� �����	�� ����	��� ����	����� �� �����
� �� ��� ����� �� �� 	� �� ��� ���	������
��	�� ���� ����	����� �� �����
� ���

���� �� ����� ��	���� �	
��	���	��
 �� �� �������	�� � ������ ������ ����
	� ��� �������
	

���� �	�� ��� ��	���� �	
��	���	�� �

���	����� �	
��	���	��
����

��	
 ��	
�
 ��� ���
�	�� ������� �
�	���	�� ��� ����� �	
������ �� � �����
���

�Æ�	����� ���������� 	
 ��� ��
	�� ���� �
�	���	�� ��� ����� ���� �� ���
�������
�
 	� ���� ����� ���

� �����������
 ������� ��� ��!���
��� �"� ����
��
����� ��	
 ���
�	�� �Æ����	����� #� 	
 ���	��
 ���� ��� ���	�	��� ����� �	
$
������ ��������
 ������ ��� ���� ����� �	
������ ���� � ����
 % 	� �����
����

 �	���� � &����' (�&����'�)������
 ���� � ���
 �� 	�*�	��
 ���� ���
���	�	��� ����� ����
 �������� �� ���	� �����
����	�� ���� ����� ����
 ��� ���
����� ����	��	�� ������� ������
 ��	�	�� �
 �� ��� ����� ��� ���	�	��
����� ��$
��� ����
 �
 ���� ����� ����
� +�� �� ��� ��	� ��
���
 �� ,!- ������ &����� �.�' 	

���� �� ���	��� ��	���� ����������� &����� ��� ���	�	��� ����� ����
 �����/	����

���	� �����
����	�� ���� ����� ����
 ����������' ���� ���� ��� ����
�

	

�Æ�	�����

�����)������
 ��� ���	�	��� ����� �	
������ ��������
 �� ��� ���� �	
������

���� 	� ��� ����
�

	
 ���	����	�� ������

-��
	��� � �����

 	� ��	�� ���� ���
�����
	0��� ��� ���
	0� �� ��� �����

���

 ���� 	� �������� ���� � � �

��� ���� ��� ����
��

���
 ���
������ ������
+��� ��	
 �����

 �� ��� ������ �� �
�	���� ��� ����� ����
 	� �� ��� � &����'
��������
 �� �&����' �
 � ����
 �"�� #� ��	
 ��
����
 �
�	���	�� ��� �	
������ 	

���� ��
	�� ���� �
�	���	�� ��� ����� ����
 	� ��� ��� �� �/������ �	
��

	�� ��
��� ������/	�� ��� �������� �� �
�	���	�� �

�� �1���

��� ��2���	�� �� ��� ��/� �/���	���� 	
 �� ����� ������� ��� �����
	
 ��� ���$
�	�� ��� ����� ���� �� � ���	
	�� ���� ������� ���������� ��� �
�� �� �������
 ����
��� 3-# ����
�� ����
	����� ��� ���� ������� ��� ����� ������ �� ���� ����
 �

2 0 4 T o bias S c he f f e r

�� �������� ��� ����	
��� 	� ���	� ����� �
����� ����
 ������
� ����	��� �����

������	� ����� ����
 �� ��
	����� ��������� �� ���� ������
 �� �
������� ����

��� �������� 	� �� �� �������� !����	� ��� "� ���	 ��� � ������	� ���� �������
���� ������#�� ��� ��$������ ���	� ���� ����
 �%����� � ���� �	��� ��&�� "� ���
��� ��������
 ��$������ ���	� �	 �������� !����	� '� "� ���� ��� � ��(�	�� ��	��
��������	� �		$
�	� ���� ������ ���)� ���� �	��� �� ��� ��� �%��������*
�����
������� ��� �������� ���
�������#���	� ���	� ����
 ��� �	��	�� ����

+�
��� , �	�$���� ��� $�������� �	 ��� ��������
�������#���	� ���	� �����

����� 	� !����	� ��� �	� ��� ��$������ ���	� ������#��
 ������� �������� ���
+�
��� � �	�$���� $�������� ���	�
���� ��� ��$������ ���	�
 !����	� '� �	
�������� ���	�� +	� �	�� ������������� ��� $�������� ����� ���� ������ ���
�������� �������	� 	� ��� �������� ����� ����� ��������� ���� ��� $�������	��
��� ���������� ��������� -��� �	� ��� .�������� ��� �� ���� $�	���� �� ��� ���
��
��/���� �������	���

0.22
0.24
0.26
0.28
0.3

0.32
0.34
0.36
0.38

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

(a) leaf nodes

predicted
cross validation

std. dev.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

(b) leaf nodes

predicted
cross validation

std. dev.

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

(c) leaf nodes

predicted
cross validation

std. dev.

0.44
0.46
0.48
0.5

0.52
0.54
0.56
0.58
0.6

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

(d) leaf nodes

predicted
cross validation

std. dev.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

(e) leaf nodes

predicted
cross validation

std. dev.

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

(f) leaf nodes

predicted
cross validation

std. dev.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

(g) leaf nodes

predicted
cross validation

std. dev.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

(h) leaf nodes

predicted
cross validation

std. dev.

���� �� ��������� �	
����
� ��� ��� �������� �����
�� ��
�� ��������
�� ������������
�
���
� �����
� ������
� ����� ���������� �
 � ���� �
���� ��� ��������� ��� ����� ��� ���� ���
���� ��� ���������� ��� ��
��� ��� ����� � � �
�
�! ����

2 0 5A v e rage - C ase A nalysis o f C lassif ic at io n A lgo rit hms

0.22
0.24
0.26
0.28
0.3

0.32
0.34
0.36
0.38

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

leaf nodes

predicted (greedy)
cross validation

std. dev.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

leaf nodes

predicted (greedy)
cross validation

std. dev.

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

leaf nodes

predicted (greedy)
cross validation

std. dev.

0.44
0.46
0.48
0.5

0.52
0.54
0.56
0.58
0.6

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

leaf nodes

predicted (greedy)
cross validation

sid. dev.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10
er

ro
r

ra
te

leaf nodes

predicted (greedy)
cross validation

std. dev.

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

leaf nodes

predicted (greedy)
cross validation

std. dev.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

leaf nodes

predicted (greedy)
cross validation

std. dev.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

er
ro

r
ra

te

leaf nodes

predicted (greedy)
cross validation

std. dev.

���� �� ��������� �	
����
� �� ��� �������� �����
�� ��
�� ��������
�� ������������
�
���
� �����
� � ������
� ���� ������� ������
� �������� ��������� ���
� ������� ���
�������� �
 � ���� �
���� ��� ��������� ��� ����� ��� ���� ��� ���� ��� ���������� ��� ��
���
��� ���� �!� �
�
��!����

� ����������

����������	� �
���	�	
��
���� ��� �������� ����� ��� 	�����	� ����� �� � ����
�
�
��������� ��� � ����
 ������ ��
����
� ��
	�
��
���� ���� ��� ���� �� ������� ���
�������� �� � ����
�
� ��������� ��� � 	������ ����
�
� ������� ���� ������
���
 ���	����	� �
���	�	�
�����
������ ����������	� �
���	�	 ���
��
���� �	
��	� �� ����� �	 ���	����	� �
���	�	� !�� ���	�
 �	 ����� ������
�� �� 	������
���������	 �� ��� �
������
� ����
�
� �������	 ����� ��������� ���
�� "
��
�
#
 	���
��� ���	 �����	��
�	 �� ��� �
����� 	���� �� � ���	���� 	�	��� ���� ��	 ��
�� "
��
 ������ ��� ���������
� �� ���� 	�	��� ���� ���� ��
 �� ����������

#
 ��	� ��	�	� ����������	� �
���	�	 ����" ��� ����� ���� �
�� �������������
�
�� ���	������	 �
� �����
 ���������	� !��	 �	 ������� � �������"� ��� �� ���	

�� ������������� ���� ��� �	����
�		 �� 	��� �
���	�	� $�
�� ��� 	���
��� �� 	���
������������
	 �	 ����
 ��Æ���� ��
��
����� �
 ��	� ��	�	 ��� �
�� ���	���� ��� �	
�� ��
 ����
�
� ���������	 �
� �� ���	��� ��� ��������
 ������
 ��������� �
�
���	���� ����� ����	� !�� ��������
�	 ���	�
��� �
 ���	 ����� ������� �����
��
��� ��� �	����
�		 �� ��� ����������� %
�����
 &'� !�� �
���	�	 �� ��� ����� ����

2 0 6 T o bias S c he f f e r

����� ��� ��	�
���
 �

�
 ��������� �� ����
� �
�� ���� ����� ���
���� �� ���
����� �		
��������

���
��� ���� ���
���� ���� ���� ��������� ��
 ��
����
��
��
�� !�� ��� "��
�
�� #�$ ���� ������� ��� �������
 �� �������� ����	
��
��
�� %������ ���
&����� #''(')$ 	
������� �� ���
���� ��
 � ���
��� �������
 �
����*�
�+ ,���
��-� #.$ ��

����
 ���
�
 �����
��� /������� ��� 0������� #'.$ ���
�-�� ���
���
��� ���� ���	
����� �� �� �
��
���� ����
��
�� ��� ��
���
� 	����
�
��
������� �� ���
���� �� 1���� 2������� �
����*�
� ��� ���� 	
������� �� "���

�� �� ��� #'3$+ ����
 ���� ���	
������ �		
���������� #4$ ��� ���
���� �������
���	��������

� �Æ������ �� ���
��� ���� ���
���� �� �
��� ��
������� ��� ����
	
������� �� #'5$�

� *
�� ��
���� �� ��� ���
���� �
��� ��� 	
������� �� 6�����
 ��� 7�������
#'8('�$ ���
���
 ����
�
�-�� #'4$ ��� �		
��� �� ���� ������
�-����� ��� ��������
�
��
���
�
�-����� #'9$� !���	������
�(:������� #'$ 	
������� � ����
�
 ���
����
����� ���������

� ������� ���� �

 ��	������� ����
 ����
 �

�

����� "������
���
����
 �����	���� #)$
���� �� �� ���
���� ���� �������� ������ ��� ���������

�����	���� ���� ��� �
������ ��� �

�
 �� ������ �������� �
�� ��� *
�� ���
����
#'8$ ��
� �� ���� ��������
 �����
��

;�� ������
�� �� �

�

���� ��� ���� ���� �� ��	
��� �� ���	�
��	� �

�

������� ;�� ���� �� � ��
�� ���� ���
���� �� #9$ �� ���� ��	������� ���� �� �

�

��� �� ���� ��
� ���� ��� ����
�� �

�
 ����� � ���� � ���� ���

�
 ������ ��
����

��� ���
���� ��	�
���
 �

�
 ���� ��	������� ���� �� �

�

��� ����
���
<��� �
����
� ����� �� !� ����
��� �� ���
���
���� 	����
������	����� ����
	(��
������ ��� ����� ����
������� ���� ����
�� ���
���
���� �

�

��� ���� ���
���
�
�
�� ��� ��	����� �

�
��

�� ����
������ �������� �� 	��� �� ������
 ��� ��������� ��	�
���
 �

�
 ���
���
�� ���
��� �� � ��� �		
������� �
��� �� ���
���
���� ����
�
�-����� �

�
�
=���� ��� ����
������ ����
������ ���� ��� ������
�� ��� ���� ���������(�� ��
��� 	�����
� �� ����
���� ��� ����� �������
 ����
�
�-����� �

�
 ������ �� �
�
�����
��� ����� �� ���� 	�	�
�(��� "�����
� ��� >��

����
 #8$ ���� 	
����
��
�� ���� ���

 �����	������� ����
	 ���� ����
 �
�� ����� �� #9$ �� ������ ����
������� ���� ��� ������
�� �� ��
� ����������

?� ���� ����� ���� ��� �

�
 ������
�� ��
 2��
��� ��������� �� � ��
����
�������
 ����
�������� � ����������
 �������� �� ������
 ���
� �� � ��
� ����
�

��� ������� ��� �

�
 ������
�� ��� �����
��
� 	
�	�
���� ����� �� ��� @A
���������� �� ��� ����
 �
��� ��� ��� �
��� �� ��
��� ����������

����������

�� �� �����	�
� � �
���

��
������ ���
�
��� ��
 �����
��������� �� ���������	
 ��

�
� ��������
 ������������� ���������� �� ���
��� �������	� ��	�
 �������� ��� �

�� �� �����	�
� �
���

��
������ �
�������� �� 	���
���!����� �

�
� �� ���������	

�� �
� ��������
 ������������� ����� ���������� �� ��������� �������	����� �����

�� "� #�$���!�� %���
���!����� �

�
 �� �����
 ���
�� ���&�
$
 �� ��������'�(�� ��
�
�

�� ���������	
 �� �
� ����
 ������������� ���������� �� ��	����
��� �������	 �
��

���� �����

2 0 7A v e rage - C ase A nalysis o f C lassif ic at io n A lgo rit hms

�� �� �����	
� ���
������	 ��� ��
������
�����	 �������� ������ ���	
 ��
�� ���
�

	
 �����	��� �
����� � ����	 �����
�� �� ��������	 � !�����	
�
����	 ��� "� #��
$%� �������� �������� ���&� $�����
'��� ����������� ���
������ ����	
� ����
	
�	 (�	 ���)�

)� ��&�� ��������� �������� �
������� ��������*������ �' �
� +,� ����� '�� ������
��� ��� ��
�� �������� ������������� �
������	�
 �
� ��������	�
	 �--.�/0123��-	

�����$�� ���(�

1� �� 4$� ��� +� 5�����%� 4�������� �' ���6��&�� �������� ������ 4� �������	
�� �� ���
�	
�� �
���
��	�
�
 ��
����
�� �
 ����	
� ����
	
�	 ����� (773(�-	 ���(�

2� 8� 5���'��� ��� �� �,�������� �������$�� �
��� ������������� $������ 4� ����
����	
�� �� ��� �
���
��	�
�
 ��
����
�� �
 ��������	�
�
 ����
	
� ������	 (---�

�� +� 5�����% ���
�
���� #�����$�� �&����� ���� ����%��� �' ���&� $�%�� ������9���� 4�
�������	
�� �� ��� �	����
�� �
���
��	�
�
 ��
����
�� �
 ����	
� ����
	
�	 �����
((-3((2	 �����

�-� +�� 5�����%	 ��%�� 4$�	 ��� !�&�� #
������� ,� ����%��� �' $�%����� ������9����
4� �������	
�� �� ��� ��
�� ���	�
�
 ��
����
�� �
 ���	 �	�
 �
��

	��
��	 �����
((73((2	 ���(�

���
� :������ ��� ;� "�$�
���� ,� �&�����6���� ����%��� �' �
� �6������� ����
$��
������9�� '�� ����% �������� 4� �������	
�� �� ��� !	����
�� �
���
��	�
�
 "�	
�

��
����
�� �
 ���	 �	�
 �
��

	��
��	 ����� (723(�7	 ���1�
�(�
� :������ ��� "� ;������ ��������*�� �&�����6���� ����%��� �' �
� �������

����
$�� �������
�� 4� �������	
�� �� ��� ����
���
�� �
���
��	�
�
 ��
����
��

�
 ����	
� ����
	
�	 �����)��31-((---�
�7� �<������ �����
�� ��� #
���� =�������� 5������� �6&����$�� ������� ���������

�� ������ �&����� ����� 4� �������	
�� �� ��� #
���
�� �

��
 ��
����
�� �
 ����

�����	�
�
 ����
	
� ������	 ����� ��23(-2	 ���2�
��� #�
�
�>��� #���� #��	���	�
 �
� ����
 ��
���	�
� 4�9? +�$���
��	
���� ,�6

������	 �����
��� #�
�
�>��� "������������ ��������*����� �' �������� ������ 4� �������	
�� �� ���

#������
 ��
����
�� �
 ����	
� ����
	
�	 (---�
�)� #�
�
�>��� +��������� �
� ��������*����� ���'������� �' ����� &��������% ����� ��6

������� ��������� 4� �������	
�� �� ��� �
���
��	�
�
 ��
����
�� �
 ����	
� ����
�

	
�	 (---�
�1� #�
�
�>�� ��� #� 8���
���� @��������� �
� �?������ ����� �' ��������� ������*���

'�� ����� ���������� #��
����� ������ #� �26�	 #��
����
� A��&�������� B�����	
���2�

�2� #�
�
�>�� ��� #� 8���
���� @��������� �
� �?������ ����� �' ��������� ������*���
'�� ����� ��������� .�$������/� 4� �������	
�� �� ��� !	����
�� ���	�
�
 ��
����
��

�
 ���	 �	�
 �
��

	��
��	 ���2�
��� #�
�
�>�� ��� #� 8���
���� @?������ ����� ����%��� '�� ����� ���������� 4�

�������	
�� �� ��� �	����
�� �
���
��	�
�
 ��
����
�� �
 ����	
� ����
	
�	 �����

2 0 8 T o bias S c he f f e r

Self-duality of Bounded Monotone Boolean

Functions and Related Problems

Daya Ram Gaur and Ramesh Krishnamurti

School of Computing Science, Simon Fraser University
B.C, V5A 1S6, Canada

{gaur,ramesh}@cs.sfu.ca

Abstract. In this paper we show the equivalence between the problem
of determining self-duality of a boolean function in DNF and a special
type of satisfiability problem called NAESPI. Eiter and Gottlob [8] use
a result from [2] to show that self-duality of monotone boolean functions
which have bounded clause sizes (by some constant) can be determined
in polynomial time. We show that the self-duality of instances in the
class studied by Eiter and Gottlob can be determined in time linear in
the number of clauses in the input, thereby strengthening their result.
Domingo [7] recently showed that self-duality of boolean functions where
each clause is bounded by (

√
log n) can be solved in polynomial time. Our

linear time algorithm for solving the clauses with bounded size infact
solves the (

√
log n) bounded self-duality problem in O(n2

√
log n) time,

which is better bound then the algorithm of Domingo [7], O(n3).
Another class of self-dual functions arising naturally in application do-
main has the property that every pair of terms in f intersect in at most
constant number of variables. The equivalent subclass of NAESPI is
the c-bounded NAESPI. We also show that c-bounded NAESPI can be
solved in polynomial time when c is some constant. We also give an alter-
native characterization of almost self-dual functions proposed by Bioch
and Ibaraki [5] in terms of NAESPI instances which admit solutions of
a ‘particular’ type.

1 Introduction

The problem of determining if a monotone boolean function in DNF containing n
clauses, is self-dual is ubiquitous. It arises in distributed systems [1,10], artifi-
cial intelligence [16], databases [14], convex programming [11] and hypergraph
theory [8], to name a few. The exact complexity of determining if a monotone
boolean function is self-dual is open. Fredman and Khachiyan [9] provide an
O(n4o(log n)+O(1)) algorithm for solving the problem. Bioch and Ibaraki [3] de-
scribe a host of problems which are equivalent to determining the self-duality.
They also address the question of existence of incremental polynomial algorithms
for solving the problem of determining the self-duality of monotone boolean
functions. In a related paper [4] they define a decomposition of the problem
and give an algorithm to determine a minimal canonical decomposition. Bioch

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 209–223, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

210 Daya Ram Gaur and Ramesh Krishnamurti

and Ibaraki [5] describe an incremental polynomial algorithm [15] for gener-
ating all monotone boolean functions of n variables. It has been shown that
for 2-monotone [6] boolean functions, it is possible to check the self-duality in
polynomial time. Bioch and Ibaraki [5] define almost self-dual functions as an
approximation to the class of self-dual functions. They describe an algorithm
based on almost self-duality to determine if a function is self-dual. The complex-
ity of their procedure is exponential in the worst case. Ibaraki and Kameda [12]
show that every self-dual function can be decomposed into a set of majority
functions over three variables. This characterization in turn gives an algorithm
(though not polynomial) for checking self-duality. Makino and Ibaraki [13] define
the latency of a monotone boolean function and relate it to the complexity of
determining if a function is self-dual.

In this paper we show the equivalence between the problem of determining
self-duality of a boolean function and a special type of satisfiability problem
called NAESPI (to be defined later). We identify a subclass (denoted easily sat-
isfiable) of NAESPI instances which can be solved in polynomial time. We show
that almost self-duality [5] implies that the corresponding NAESPI is not eas-
ily solvable and vice-versa. Having established the equivalence between almost
self-duality and not easily satisfiable instances of NAESPI, we show an NP-
completeness result for determining the solution of a particular type of NAE-
SPI. This result is interesting as it relates to the concept of almost self-duality.
Eiter and Gottlob [8] use a result from [2] to show that self-duality of monotone
boolean functions which have bounded clause sizes can be determined in polyno-
mial time. We show that NAESPI which has clauses of size at most k (denoted
k-NAESPI) can be solved in O(n2k+2) time (this corresponds to self-duality
of monotone boolean functions which have clauses of size at most k). Next,
we reduce the complexity of the O(n2k+2) algorithm for solving k-NAESPI to
O(2(k2)nk), which is linear in n for constant k. We show that for k-NAESPI
where the intersection between pairs of clauses is bounded by c, the number of
clauses is at most kc+1. We also show that c-bounded NAESPI can be solved in
O(n2c+2) time, which is polynomial for constant c.

In Section 2, we introduce the problem of determining whether a monotone
boolean function is self-dual. Next we introduce the not-all-equal satisfiability
problem with only positive literals and with the intersection property (NAESPI),
and establish the equivalence between the two problems. We also show that
imposing certain restrictions to either the instances of NAESPI or solutions to
NAESPI enables us to compute the solution in polynomial time. In Section 3,
we provide an O(n2k+2) algorithm for the NAESPI problem which has n clauses
with at most k variables each. In Section 5. we modify the algorithm presented
in Section 4. to obtain an algorithm for solving k-NAESPI in O(2(k2)nk) time. In
Section 5, we provide an upper bound on the number of clauses for the c-bounded
k-NAESPI problem. In the same section, we show that c-bounded NAESPI can
be solved in O(n2c+2) time, which is polynomial for constant c.

Self-duality of Bounded Monotone 211

2 Self-duality of monotone boolean functions and
NAESPI

Given a boolean function f(x1, x2, . . . , xn), we define its dual denoted by fd as
follows:

Definition 1 Dual: fd(x) = f̄(x̄), for all vectors x = (x1, x2, . . . , xn) ∈ {0, 1}n.

Next we define monotone boolean functions.

Definition 2 Monotone boolean function: A boolean function f is monotone if
∀x, y ∈ {0, 1}n f(x) ≤ f(y). A vector x ≤ y if xi ≤ yi, i ∈ {1..n}.

Equivalently, a boolean function is monotone if it can be represented by an
expression which does not contain any negative literals. If a monotone function f
is in disjunctive normal form (DNF) then fd can be obtained by interchanging
every and operator with an or operator and vice versa. fd is then be in conjunc-
tive normal form (CNF). Self-duality can now be defined as:

PROBLEM: Self-duality
INSTANCE: A boolean function f(x1, x2, . . . , xn).
QUESTION: For every vector x = (x1, x2, . . . , xn) ∈ {0, 1}n is fd(x) = f(x)?

From the definition of self-duality it follows that:

Property 1 A boolean function f is self-dual ⇐⇒ for all vectors x ∈ {0, 1}n,
f(x) �= f(x̄).

We can assume that the monotone function f is in DNF. Next we show that
if there exists a pair of clauses in a monotone function f which do not intersect
in any variable, then f is not self-dual. This observation is also implicit in [9].

Lemma 1 If there exists a pair of non-intersecting clauses in a monotone func-
tion f , then f is not self-dual.

Proof: Let C1 and C2 be two such clauses. We construct a vector x ∈ {0, 1}n such
that all the variables occurring in C1 are set to 1 and all the variables occurring
in C2 are set to 0. The remaining variables are arbitrarily set to 0 or 1. f(x) = 1
as the clause C1 evaluates to 1. Also, f(x̄) = 1 as C2 evaluates to 0 on x. Hence
by Proposition 2, f is not self-dual. ��

Lemma 1 allows us to focus only on those monotone boolean functions in
which every pair of clauses intersect. Another assumption which we use through-
out this paper is the following:

212 Daya Ram Gaur and Ramesh Krishnamurti

Property 2 Every variable in f belongs to at least 2 terms in f .

Property 2 coupled with Lemma 1 implies that each term has at most n
variables where n is the total number of clauses in f . Therefore the total number
of variables m ≤ n2 in f . Given such a function f , we now construct the NAESPI
problem and show the equivalence of the two problems. Next we define the
NAESPI problem.

PROBLEM: NAESPI
INSTANCE: Given a set of variables V = (v1, v2, . . . , vm), and a collection

of clauses Ci, i = {1, . . . , n}, Ci ⊆ V , every pair of clauses Ci, Cj has a
non-empty intersection.

QUESTION: Find a set S ⊆ V such that S contains at least one variable from
every clause, but no clause is contained in S.

We are given a monotone boolean function f in DNF form. P is obtained
by interpreting the function as a CNF formula. In other words, if f = (x1 ∧
x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) then P = (x1 ∨ x2) ∧ (x1 ∨ x3) ∨ (x2 ∨ x3). Note that
every pair of clauses in P intersect since every pair of clauses in f intersect. The
next proposition states that the complement of a solution to a given NAESPI
problem P is also a solution to P .

Proposition 1 If S is solution to a given NAESPI problem P , then so is S̄.

We now show that the two problems are equivalent by showing that f is not
self-dual if and only if P is satisfiable.

Theorem 1 f is not self-dual ⇐⇒ P is satisfiable.

Proof: ⇒ Assume that f is not self-dual. By Proposition 2 we have a vector x
such that f(x) = f(x̄). There are two cases:

– f(x) = f(x̄) = 1. Let Ci be the clause in f which evaluates to 1. For the
vector x̄, Ci evaluates to 0. As Ci intersects every other clause in f , all these
clauses have at least one variable set to 0. This is a contradiction as f(x̄)
was supposed to be 1. Hence this case cannot happen. This also amounts to
saying that the function is not dual-minor, hence it cannot be self-dual.

– f(x) = f(x̄) = 0. Let S be the union of all the variables in f which are
assigned 1 in the vector x. Each clause in f contains at least one 0 because
f(x) = 0. Similarly, each clause in f contains at least one 1 as f(x̄) = 0. This
means that S contains at least one element from each clause in P and does
not contain at least one element from each clause in P . Hence S intersects
every clause in P but does not contain any clause in P . Therefore, S is a
valid solution.

Self-duality of Bounded Monotone 213

⇐ Given a solution S to P , construct the vector x ∈ {0, 1}n as follows:

xi = 1 if xi ∈ S else xi = 0

Clearly, f(x) = 0. Since S̄ is also a solution to P (by Proposition 1), it follows
that that f(x̄) = 0. Hence by Proposition 2 f is not self-dual. ��

We now describe two particular types of solutions to the NAESPI problem
which can be computed in polynomial time.

Definition 3 Easy solution: Given an NAESPI problem P , let S be a solution
such that S is contained in some clause of P . We call S an easy solution to P .

Given an easy solution S to the NAESPI problem P , we show that there
exists a clause C ∈ P such that C intersects S in |C| − 1 variables. We do this
by showing that if this property does not hold, then we can augment S until the
above mentioned property does hold. Given this fact, we devise an algorithm to
try out all the possible valid subsets to see if any one of them is a solution. As the
number of valid subsets is polynomial, the algorithm terminates in polynomial
time. More formally we need the following lemma:

Lemma 2 Let S be an easy solution to the NAESPI problem P . S can be ex-
tended to another easy solution S′ such that for a clause C ∈ P , |C∩S| = |C|−1.

Proof: Let C0 be the clause which contains S. Let a be an element of C0 not
in S. Let S = S ∪ a. If S is still a solution, we continue to add variables (which
are not in C0) to S until S is no longer a solution (it is easy to see that this
process of adding variables must terminate). If S is not a solution to P then
there is some clause C ∈ P , such that C = S. Let a be the last variable added
to S. hen |C ∩ S − {a}| = |C| − 1. But this implies that |C ∩ S| = |C| − 1. ��

Lemma 2 provides a simple polynomial algorithm that generates each easy
candidate solution to the problem P , and verifies if it is indeed a solution. For
clause C ∈ P , there are only |C| subsets of size |C|−1 which are candidates. For n
clauses, there are at most n × |C| ≤ n2 candidates which need to be verified.
Since verifying each candidate takes O(n) time, the algorithm complexity is
O(n3) time.

It should be noted that Lemma 2 is also valid for the NAESP problem (where
we drop the requirement that all the pairs of clauses intersect). Next we show
that if every pair of clauses in a given NAESPI problem P always intersects in
at least two variables, then P is trivially satisfiable.

Definition 4 Easily solvable: A NAESPI instance is said to be easily solvable
if it admits an easy solution.

Next we study the relationship between easily satisfiable instances of NAESPI
and the almost self-dual functions proposed by Bioch and Ibaraki [5]. We give
some definitions from [5] below. A monotone boolean function f is called dual-
minor if f ≤ fd. Given w a minterm of f , we represent by w all the variables
which are not in w but in f .

214 Daya Ram Gaur and Ramesh Krishnamurti

Sub-dual of a function f , denoted fs =
∑

w∈f wwd, where w is a minterm
of f . A function f is defined to be almost dual-major if fs ≤ f . A function is
satisfiable if there exists a vector x ∈ {0, 1}n such that some clause evaluates
to 1 (recall that f is in DNF). The set of variables set to 1 is referred to as the
solution set S. f is easily satisfiable if the solution set S is properly contained
inside some clause in f .

Definition 5 Almost self-dual: A function f is called almost self-dual if fs ≤ f
and f is dual-minor.

Theorem 2 A monotone boolean function f is almost self-dual ⇐⇒ fd is not
easily satisfiable.

Proof: ⇒ Given an almost self-dual function f , we want to prove that fd is
easily satisfiable. As, f is self-dual, fs ≤ f , which implies fd ≤ fsd. Suppose
that fd is easily satisfiable. This implies fsd evaluates to 1 on some vector x.
Let x be properly contained inside clause C ∈ fd. But in fsd we have C as a
clause and as fsd is in CNF, x is not a solution to f .

⇐ Given that fd is not easily satisfiable, we want to show that fd ≤ fsd.
Suppose that fd(x) = 1. We want to show that fsd(x) = 1. As the solution
to fd is not an easy solution, it intersects every clause in fsd. f is dual-minor
because fd has the intersection property. ��

Theorem 2 implies that f is almost self-dual ⇐⇒ the corresponding NAESPI
is not easily satisfiable (corresponding NAESPI is structurally similar to fd).

Lemma 3 NAESPI with cardinality of intersection at least two has a trivial
solution.

Proof: Let C be the clause which does not properly contain any other clause (such
a clause always exists). Let the cardinality of this clause be m. Let any m − 1
elements from this clause be denoted by set S. We claim that S is a solution.
Since C intersects every other clause in at least two variables, S contains at least
one variable from every clause. In addition, since every clause (other than C)
contains a literal not in C, S cannot contain all the literals in a clause. ��

3 k-NAESPI

In this section we study the k-NAESPI problem, in which there are n clauses
and every clause has at most k variables. We present an algorithm which solves
the k-NAESPI problem in O(n2k+2) time (where n is the number of clauses).
For a given clause in the k-NAESPI problem, there are at most k assignments
of boolean values to the variables which set exactly one of the variables in the
clause to 1 and the remaining variables to 0. We call such an assignment a
10∗ assignment. The algorithm operates in stages. For the subproblem in an
intermediate stage, if B denotes the set of clauses which do not have any variable
set to 1, the algorithm tries out all the k possible assignments of the type 10∗ for
the clauses in B. We show that at most k stages are needed by the algorithm,
implying a running time of O(nO(k)) for the algorithm.

Self-duality of Bounded Monotone 215

In the following discussion, we assume that the problem has at least k distinct
variables, else we can determine the satisfiability in O(2k) time.

Our algorithm is a recursive algorithm, which tries out all the possible 10∗

assignments for every clause in a stage. Let U denote the set of variables set to 1.
Let B be the set of clauses that do not contain any variable in U . The algorithm
tries out all possible 10∗ assignment for every clause in B. The subproblem
obtained after choosing a clause is solved recursively. Sets U and B are updated
in each stage. The algorithm terminates either after k stages or after all the
variables are assigned a boolean value.

To prove the correctness of the algorithm we need the concept of minimal
solutions.

Definition 6 Minimal solution: A solution S to a k-NAESPI is minimal if no
proper subset of S is a solution.

Let S be a minimal solution to the given k-NAESPI problem instance. Then
there is a clause C which contains at most one element from S. Suppose this
were not true, then every clause contains at least two variables from S. Remove
from S any element s ∈ S. S−s is still a solution to the problem as every clause
contains at least one element from S. Clearly this violates the minimality of S.
The above argument holds for any intermediate stage in the algorithm. At any
intermediate stage, note that U denotes the set of variables set to 1 so far in the
partial assignment and B the set of clauses which do not contain any variable
in U .

Theorem 3 If the partial assignment U can be extended to a complete minimal
solution U ′, then there exists a clause in B which contains at most one element
from U ′.

Proof: Let A denote the set of clauses which contain one or more variables
from the set U (the set of variables set to 1 in the partial assignment). Let W be
the set of variables occurring in the set of clauses B (which do not contain any
variable set to 1). Note that U ∩ W = φ. This means that setting any variable
in W to 0 does not unsatisfy any clause in set A. To obtain a contradiction,
assume that every clause in B contains at least two variables from the set U ′.
We can set any variable in U ′ to 0 without unsatisfying any of the previously
satisfied clauses. This violates the fact that U ′ is minimal. ��

Next we show that the satisfiability of any subproblem when the algorithm
terminates is easy to determine. Without loss of generality, we can assume that
the algorithm terminates after k stages (else the satisfiability can be determined
trivially). We argue that after k stages, there are at least k clauses of cardinal-
ity 2. Furthermore, the satisfiability of such an instance can be ascertained in
polynomial time.

Lemma 4 Let P be a k-NAESPI problem which contains at least k distinct
clauses of size 2. Satisfiability of P can be determined in polynomial time.

216 Daya Ram Gaur and Ramesh Krishnamurti

Proof: Without loss of generality, assume that the first k clauses are:

(a1, b), (a2, b), . . . , (ak, b)

Suppose that there exists a clause C which does not contain b. Then ai ∈
C, ∀i ∈ {1, . . . , n}, since every pair of clauses intersect. If such a clause C exists,
then P is unsatisfiable, else P is satisfiable. ��

The algorithm moves from stage i to stage i+1 by picking a clause and setting
some variable in it to 1 and every other variable to 0. The variable set to 1 is
different from any of the variables set to 1 in stages 1 to i. This follows from the
fact that at each stage the algorithm only considers clauses which do not have any
variable set to 1.Thus after k stages, there are at least k clauses in which exactly
one variable is set to 1 and the remaining variables set to 0. Also, the k variables
which are set to 1 are all distinct. We next define the concept of contraction,
and describe some properties of contractions. We use contraction to show that
after k stages the problem has at least k distinct clauses of cardinality 2.

Let A be a subset of variables in the k-NAESPI problem.

Definition 7 Contraction: For A ⊆ V (V is the set of variables in problem P ′),
a contraction A → a occurs when every occurrence of a variable in A is replaced
by a.

The property of contractions stated in the proposition below follows from
the definition.

Proposition 2 Problem P ′ obtained by contraction A → a is satisfiable ⇐⇒ P
has a solution S which contained all the variables in A.

Contraction A → a implies that if P ′ has a solution, then all the variables
in A (in P) can be forced to the same value. Lemma 5 below proves that after k
stages, there are at least k clauses of cardinality 2 each.

Lemma 5 After the algorithm has made k choices (and is in stage k + 1) there
exists a contraction such that the resulting problem P ′ has at least k clauses of
cardinality 2.

We have k clauses of the type:

(a1, A1), (a2, A2), . . . , (ak, Ak)

Each ai, i = 1, . . . , k, is a distinct variable that is set to 1. Each Ai, i =
1, . . . , k, is the set of variables in a clause that are set to 0. As A1 = A2 = . . . =
Ak = 0, we can perform contraction (A1 ∪A2 ∪ . . .∪Ak) → b. We can therefore
represent the k clauses as below:

(a1, b), (a2, b), . . . , (ak, b)

Self-duality of Bounded Monotone 217

Each of the above k clauses is of cardinality 2. ��
We use Lemmas 4 and 5 to show that the algorithm terminates in O(n2k+2)
time.

Theorem 4 The algorithm runs in O(n2k+2) time.

Proof: By Lemma 5 the algorithm needs at most k stages. In each stage the
algorithm has to try at most n clauses., for each of which there are at most k
assignments of type 10∗ to be tried. Therefore the recurrence is:

T (k) = n× k × T (k − 1)

which evaluates to (n × k)k ≤ (n2)k as k ≤ n. As it takes O(n2) time to
verify the solution, the time complexity is O(n2k+2). ��

4 Linear Time algorithm for solving k-NAESPI

The algorithm is again recursive but instead of trying out every possible 10∗

assignment for every clause, it tries out all the 2k − 2 contractions for each
of some k clauses. The algorithm begins by choosing a clause of length greater
than 2 and a contraction for it. It then removes all the clauses which are trivially
satisfied (clauses which contain both the contracted variables). Suppose that we
are in Stage l+1. The clauses which are of cardinality 2 are of the form shown
below (Lemma 4). This is under the assumption that the contraction we made
is extendible to a solution.

(a1 ∨ b) ∧ (a2 ∨ b) ∧ (. ∨ b) ∧ (. ∨ b) ∧ (al ∨ b)

Without loss of generality, we assume that there is a clause which does not
contain any of the variables from the set {a1, . . . , al} else, we have a solution to
the problem. This follows from the fact that each clause contains at least one
of the variables from {a1, . . . , al}. Setting all the variables in {a1, . . . , al} to 1
and rest of the variables to 0, results in a solution to the given instance. Let C
be such a clause. For Stage l+1 we try out all the possible 2k-2 contractions for
Clause C. We need to argue that any contraction of C gives us a subproblem
with l+1 distinct variables a1, a2, . . . , al+1. Let A be the set of variables in C
which are set to the same value and B the set of remaining variables in C (which
are set to a value different from the value to which the variables in A are set).
If b �∈ A then there exists a variable in B which is different from any of the ai′s.
This is due to the fact that C does not contain any of the variables a1, a2, . . . , al.
Hence the clause obtained after the contraction is distinct. The case when b ∈ A
is symmetrical.

Formally the algorithm is stated below:
Algorithm

1. S is the set of distinct variables which belong to some clauses of size 2 and are
forced to have the same value (S = {a1, a2, . . . , al} in the previous example).
Initially S = Φ.

218 Daya Ram Gaur and Ramesh Krishnamurti

2. Find a clause C such that C does not contain any variable in S. If no such
clause exists then S intersects with all the clauses and we are done.

3. For each contraction (out of the 2k − 2 possible ones), update S, remove all
the clauses which are trivially satisfied and goto Step 2.

Let us consider the projective plane example again.

Example 1.

(1∨2∨3)∧ (3∨4∨5)∧ (1∨5∨6)∧ (1∨4∨7)∧ (2∨5∨7)∧ (3∨6∨7)∧ (2∨4∨6)

Consider the first clause and a contraction in which {1, 2} get the same value
and 3 gets a value different from 1 and 2. Since {1, 2} get the same value we can
replace them with a new variable a. Hence, the modified problem is:

(a∨ 3)∧ (3∨ 4∨ 5)∧ (a∨ 5∨ 6)∧ (a∨ 4∨ 7)∧ (a∨ 5∨ 7)∧ (3∨ 6∨ 7)∧ (a∨ 4∨ 6)

and S = {a}. Let (3∨4∨5) be the clause C (which does not contain a) for which
we are going to try out all the possible contractions next. Possible contractions
for C are {{3, 4}, {3, 5}, {4, 5}}. Let {3, 4} be contracted to variable b. Then the
subproblem obtained is;

(a ∨ b) ∧ (b ∨ 5) ∧ (a ∨ 5 ∨ 6) ∧ (a ∨ b ∨ 7) ∧ (a ∨ 5 ∨ 7) ∧ (b ∨ 6 ∨ 7) ∧ (a ∨ b ∨ 6)

S now is updated to S ∪{5} = {a, 5}. Also, the problem is not in minimal form
as we have clauses which contain the clause (a∨ b). The minimal subproblem is:

(a ∨ b) ∧ (b ∨ 5) ∧ (a ∨ 5 ∨ 6) ∧ (a ∨ 5 ∨ 7) ∧ (b ∨ 6 ∨ 7)

and so on.

The algorithm solves the subproblem recursively. If the subproblem is un-
satisfiable then we try out the next contraction for the first clause. If all the
contractions have been tried for the first clause then we return unsatisfiable.

Theorem 5 The modified algorithm terminates in O((2k)k × n× k) time.

Proof: After k recursive calls we can use Lemma 5 to determine the satisfiability
of the instance, as all the contracted clauses (of size 2) are distinct. Therefore
the number of the times Lemma 5 is invoked is given by the following recurrence:

f(k) = 2kf(k − 1)

As it takes O(nk) time to determine the satisfiability in the invocation of
Lemma 5, the running time of the algorithm is O((2k)k × n× k) which is linear
in n. ��

Self-duality of Bounded Monotone 219

5 c-bounded

In this section we describe polynomial time algorithms for the k-NAESPI and the
NAESPI problem when any two pairs of clauses intersect in at most c variables.
It should be noted that we treat k and c as constants.

Definition 8 (c-bounded NAESPI) A (k-)NAESPI is c-bounded if every two
clauses intersect in less than c+1 variables.

As pointed out in Section 1. c-bounded k-NAESPI is of interest because this
subclass of NAESPI arises naturally in designing coteries used to achieve mutual
exclusion in distributed system with minimum number of messages.

For c-bounded k-NAESPI we show that there exists an algorithm which can
determine the satisfiability of the input instance in O(nc+1k) time. We show
an upper bound of kc+1 on the number of clauses (n) for c-bounded k-NAESPI
which do not contain any solution of size strictly less than l. In this case the
algorithm shown in Section 4. for solving k-NAESPI terminates in O(k(c+1)kn)
time for c-bounded k-NAESPI. If there exists a solution of size at most c then
we try out all the subsets of size c. As there are O(nc) subsets of size c and
verifying the solution takes O(nk) time, the total running time for this case is
O(nc+1k). Since, O(nc+1k)) dominates O(k(c+1)kn), c-bounded k-NAESPI can
be solved in O(nc+1k)) time.

For the c-bounded NAESPI we give an O(n2c+2) algorithm for solving the
problem. It should be noted that c-bounded k-NAESPI is a subclass of c-bounded
NAESPI hence the latter results is weaker. Also, the techniques used in obtain-
ing the respective results have no similarity whatsoever. Sections 5.1 and 5.2
describe the results for the c-bounded k-NAESPI and c-bounded NAESPI prob-
lems respectively.

5.1 c-bounded k-NAESPI

In this section we show that for a c-bounded k-NAESPI, the number of clauses
n ≤ kc+1. The main tool used in obtaining the results is an auxiliary graph
which is defined below.

Definition 9 (Auxiliary Graph) An auxiliary graph is an edge labeled clique
graph whose vertices are the clauses and the labels on edge (i, j) are the variables
which are common to clauses i and j.

Definition 10 (c-solvable) A k-NAESPI is c-solvable if there exists a solu-
tion S such that |S| ≤ c.

Theorem 6 For c-bounded k-NAESPI (which is not c-solvable) the number of
clauses n ≤ kc+1.

Proof: Let G be the auxiliary graph. For any c variables x1, . . . , xc, let
K1, . . . , Kc be the corresponding cliques which contain labels x1, . . . , xc. Let

220 Daya Ram Gaur and Ramesh Krishnamurti

V1,c = ∩i∈{1..c}Ki be the set of vertices which are in cliques K1 through Kc. We
claim:

|V1,c| ≤ k

Let u be a vertex which is not in K1, . . . , Kc. Such a vertex should exist
otherwise the given input is c-solvable. No two edges from u which are incident
on any two vertices in V1,c can have the same label, else we have an edge which
has k + 1 labels on it. As |u| ≤ k, we get |V1,c| ≤ k.

Now we bound the size of ∩i∈{1..c−1}Ki. Let v be a vertex which does not
belong to ∩i∈{1..c−1}Ki (v exists because the input is not (c-1)-solvable). Ev-
ery edge from v onto ∩i∈{1..c−1}Ki has a label different from x1, . . . , xc−1 (as
∩i∈{1..c−1}Ki is maximal). Let L be the set of labels on the edges incident from v
onto ∩i∈{1..c−1}Ki. Each label l ∈ L can occur at most k times or we would have
|V1,c| > k.

Using the argument presented above, if l ≤ c:
| ∩i∈{1..l} Ki| ≤ kc−l+1

Now we are ready to bound the size of individual cliques Ki. Let u be the
vertex not in Ki (such a vertex exists because the input is not 1-solvable). L
is the set of labels on edges incident from u onto Ki. We know |L| ≤ k and
|Ki ∩ Kj | ≤ kc−1 for any label xj . The maximum number of vertices in Ki is
≤ kc (i.e. l(xi) ≤ kc).

We also know that,

n ≤
∑

xi∈C

l(xi)

Hence,
n ≤ kc+1

��
In this section we have established that for instances of k-NAESPI which are

c-bounded the number of clauses is n ≤ kc+1. Next we describe an O(n2c+2)
algorithm for c-bounded NAESPI.

5.2 c-bounded NAESPI
Definition 11 (c-bounded NAESPI) An instance of NAESPI is called c-
bounded if every pair of clauses intersect in at most c variables for some con-
stant c.

In this section we show that c-bounded NAESPI can be solved in O(n2c+2)
time. For a set of variables V an assignment of boolean values to the variables
is called a 1∗0 assignment if all the variables in V except one are set to 1 and
the remaining variable set to 0. If all but one variable are set to 0 then the
assignment is called a 10∗ assignment.

We use the following definitions in the subsequent subsections. A solution S
to a given NAESPI is a subset of variables such that V intersects each clause in
the input but does not contain any clause in the input. A solution S is called

Self-duality of Bounded Monotone 221

minimal if no proper subset of S is a solution. If V is the set of variables in the
input instance then at times we refer to S as the set of variables which can be
set to 1 and V \ S is the set of variables which can be set to 0.

Given an instance of c-bounded NAESPI, without loss of generality, assume
that the minimal solution contains c+1 variables at least, else the input instance
is c-solvable and we can determine the solution in O(nc+2) time. This follows
because there are at most O(nc) hitting sets which could be defining the solution
and it takes O(n2) time to verify if some subset is extendible to a solution.

Let {a1, . . . , ac} be the variables in the minimal solution. This implies the
existence of c clauses C1 = (a1 ∨ A1), C2 = (a2 ∨ A2), . . . , Cc = (ac ∨ Ac), such
that all the variables in the set ∪i=1...cAi are set to 0 given the fact that the
variables a1, a2, . . . , ac have been set to 1. Once again we can partition the set
of clauses in the input into two sets: P denotes the set of clauses which have
at least one variable set to 1 and N denotes the set of clauses which have at
least one variable set to 0 in our trial. Clauses which contain variables set to
both 1 and 0 will be satisfied and are removed from further consideration. All
the clauses in P contain every ai as they have to intersect with every Ci. Clauses
in N contain no variable set to 1.

Assume, |P | ≥ c + 2, else we can try out all the O(nc+1) possibilities and
determine the solvability of the instance in O(n2c+2) time. Once again, there are
at most O(nc+1) hitting sets and for each hitting set we spend O(n2) time to
verify if the hitting set is indeed a solution.

Theorem 7 Given N and P as defined above, the solvability of the input in-
stance can be determined in polynomial time.

Proof: It should be noted that all the uninstantiated variables in the set of
clauses P are distinct. We are interested in finding a hitting set S of uninstan-
tiated variables from P such that S does not contain any clause in N . If we
have such a set S then, setting S to 0 and all the other variables to 1 leads to a
solution.

Let l be the minimum number of uninstantiated variables in a clause in N .
This implies that |P | ≤ l, else there are two clauses in P which have an inter-
section in more than c variables. Furthermore every set of (l-1) uninstantiated
variables from the set of variables in P does not contain any clause in N . This
follows from the fact that l is the cardinality of the minimum-sized clause.

Let S0, S1 be two hitting sets of clauses in P , such that S0 and S1 differ in
exacly one variable. If two such hitting sets do not exist, then all the variables
are forced to have an assignment of values different from the variables a and b
and the solvability of the instance can be determined easily. As S0 and S1 differ
in only 1 variable and |P | ≥ c + 2, |S0 ∩ S1| ≥ c + 1.

This implies that either S0 or S1 does not contain a clause in N . If both S0

and S1 contained a clause in N then there would be two clauses in N which
intersect in more than c variables (note that each clause in N has at least c+1
variables). If S0 is the hitting set which does not contain a clause in N , then
setting all the variables in S0 to 0 and the remaining variables to 1 leads to a
solution to the input instance.

222 Daya Ram Gaur and Ramesh Krishnamurti

As there are n clauses of size at most n, determining the right set of clauses
C1, . . . , Cc and the 10∗ assignments can take at most

(
n2

c

)
= O(n2c) time. As,

it takes O(n2) time to verify a solution, the total running time for this case is
O(n2c+2). ��

The case where |P | ≤ c + 1 is treated in the same way as, for the 2-bounded
case. We try out all the O(nc+1) minimal sets of variables in the set N which
could be defining the solution. As it takes O(n2) time to verify if some subset of
variables is a solution and given the fact that there are at most O(nc+1) hitting
sets, the total running time of the algorithm is O(n2c+2). Hence, the running
time of the algorithm is domainted by O(n2c+2).

6 Conclusion

We established the equivalence of determining the satisfiability of the NAESPI
problem and that of determining the self-duality of monotone boolean functions.
We established the hardness of finding certain types of solutions to NAESPI. We
also gave an alternate characterization of almost self-dual functions in terms of
a subclass of NAESPI.

We provided an O(2(k2)nk) algorithm for the NAESPI problem with n clauses
and at most k variables per clause. We showed that the self-duality of instances
in the class bounded by size studied by Eiter and Gottlob [8] can be deter-
mined in time linear in the number of clauses in the input, thereby strengthening
their result. Domingo [7] recently showed that self-duality of boolean functions
where each clause is bounded by (

√
log n) can be solved in polynomial time.

Our linear time algorithm for solving the clauses with bounded size infact solves
the (

√
log n) bounded self-duality problem in O(n2

√
log n) time, which is better

bound then the algorithm of Domingo [7], O(n3).
For c-bounded k-NAESPI we showed that the number of clauses n ≤ kc+1.

We also showed that c-bounded k-NAESPI can be solved in O(nc+1k) time.
For c-bounded NAESPI we gave an O(n2c+2) algorithm for determining the
satisfiability of the problem. An open problem is to provide a polynomial time
algorithm for the general NAESPI problem.

Acknowledgements: The authors would like to thank Tiko Kameda for helpful
discussions and comments on an earlier version of this paper.

References

1. D. Barbara and H. Garcia-Molina. The vulnerability of vote assignments. ACM
Transactions on Computer Systems, 4(3):187–213, Aug. 1986. 209

2. C. Berge. Graphs and Hypergraphs. North-Holland, 1973. 209, 210
3. J. Bioch and T. Ibaraki. Complexity of identification and dualization of positive

boolean functions. Information and Computation, 123(1):50–63, 1995. 209
4. J. Bioch and T. Ibaraki. Decomposition of positive self-dual functions. Discrete

Mathematics, 140:23–46, 1995. 209

Self-duality of Bounded Monotone 223

5. J. C. Bioch and T. Ibaraki. Generating and approximating nondominated coteries.
IEEE Transactions on parallel and distributed systems, 6(9):905–913, 1995. 209,
210, 213

6. E. Boros, P.L. Hammer, T. Ibaraki, and K. Kawakami. Identifying 2-monotonic
positive boolean functions in polynomial time. In W.L. Hsu and R.C.T. Lee,
editors, Springer Lecture Notes in Computer Science 557, International Symposium
on Algorithms, Taipei, 104-115, 1991. 210

7. D. Carlos. Polynomial time algorithms for some self-duality problems. In Proceed-
ings of the Italian Conference on Algorithms, March 1997. 209, 222

8. T. Eiter and G. Gottlob. Identifying the minimum transversals of a hypergraph
and related problems. Siam Journal of Computing, 24(6):1278–1304, 1995. 209,
210, 222

9. Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of
monotone disjunctive normal forms. Journal of Algorithms, 21(3):618–628, Nov.
1996. 209, 211

10. H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system.
Journal of the ACM, 32:841–860, 1985. 209

11. V. Gurvich and L. Khachiyan. Generating the irredundant conjunctive and disjunc-
tive normal forms of monotone boolean functions. Technical Report LCSR-TR-251,
Dept. of Computer Science, Rutgers Univ., Aug. 1995. 209

12. T. Ibaraki and T. Kameda. A boolean theory of coteries. IEEE Transactions on
Parallel and Distributed Systems, pages 779–794, 1993. 210

13. K. Makino and T. Ibaraki. The maximum latency and identification of positive
boolean functions. In D. Z. Du and X. S. Zhang, editors, ISAAC 1994, Algorithms
and Computation, volume 834 of Springer Lecture Notes in Computer Science,
pages 324–332. 210

14. H. Mannila and K. J. Räihä. An application of armstrong relations. Journal of
Computer and System Science, 22:126–141, 1986. 209

15. C. Papadimitriou. Computational Complexity. Addison Wesley, 1994. 210
16. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–

95, 1987. 209

Sharper Bounds for the Hardness of Prototype

and Feature Selection

Richard Nock1 and Marc Sebban2

1 Université des Antilles-Guyane, Dépt Scientifique Interfacultaire, Campus de
Schoelcher

97233 Schoelcher, France
Richard.Nock@martinique.univ-ag.fr

2 Université des Antilles-Guyane, Dépt de Sciences Juridiques, Campus de Fouillole
97159 Pointe-à-Pitre, France
Marc.Sebban@univ-ag.fr

Abstract. As pointed out by Blum [Blu94], ”nearly all results in Ma-
chine Learning [...] deal with problems of separating relevant from irrele-
vant information in some way”. This paper is concerned with structural
complexity issues regarding the selection of relevant Prototypes or Fea-
tures. We give the first results proving that both problems can be much
harder than expected in the literature for various notions of relevance. In
particular, the worst-case bounds achievable by any efficient algorithm
are proven to be very large, most of the time not so far from trivial
bounds. We think these results give a theoretical justification for the nu-
merous heuristic approaches found in the literature to cope with these
problems.

1 Introduction

With the development and the popularization of new data acquisition technolo-
gies such as the World Wide Web (WWW), computer scientists have to analyze
potentially huge data sets. The available technology to analyze data has been
developed over the last decades, and covers a broad spectrum of techniques and
algorithms. The overwhelming quantities of such easy data represent however a
noisy material for learning systems, and filtering it to reveal its most informative
content has become an important issue in the fields of Machine Learning (ML)
and Data Mining.

In this paper, we are interested in two important aspects of this issue: the
problem of selecting the most relevant examples (named prototypes), a problem
to which we refer as ”Prototype selection” (PS), and the problem of selecting the
most relevant variables, a problem to which we refer as ”Feature selection” (FS).
Numerous works have addressed empirical results about efficient algorithms for
PS and FS [Koh94, KS95, KS96, SN00a, SN00b, Ska94, WM97] and many others.
However, in comparison, very few results have addressed the theoretical issues of

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 224–238, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Sharper Bounds for the Hardness of Prototype and Feature Selection 225

both PS and FS, and more particularly have given insight into the hardness of
FS and PS. This is an important problem because almost all efficient algorithms
presented so far for PS or FS are heuristics, and no theoretical results are given
for the guarantees they give on the selection process. The question of their behav-
ior in the worst case is therefore of particular importance. Structural complexity
theory can be helpful to prove lowerbounds valid for any time-efficient algorithm,
and negative results for approximating optimization problems are important in
that they may indicate we can stop looking for better algorithms [Bel96]. On
some problems [KKLP97], they have even ruled out the existence of efficient
approximation algorithms in the worst case.

In this paper, we are interested in PS and FS as optimization problems. So
far, one theoretical result exists [BL97], which links the hardness of approximat-
ing FS and the hardness of approximating the Min-Set-Cover problem. We
are going to prove in that paper that PS and FS are very hard problems for var-
ious notions of what is ”relevance”, and our results go far beyond the negative
results of [BL97]. The main difficulty in our approach is to capture the essential
notions of relevance for PS and FS. As underlined in [BL97], there are many def-
initions for relevance, principally motivated by the question ”relevant to what?”,
and addressing them separately would require large room space. However, these
notions can be clustered according to different criteria, two of which seem to be
of particular interest. Roughly speaking, relevance is generally to be understood
with respect to a distribution, or with respect to a concept. While the former
encompasses information measures, the latter can be concerned with the target
concept (governing the labeling of the examples) or the hypothesis concept built
by a further induction algorithm. In this work, we have chosen to address two
notions of relevance, each representative of one cluster, for each of the PS and
FS problems.

We prove for each of the four problems, that any time-efficient algorithm
shall obtain very bad results in the worst case, much closer than expected to
the ”performances” of approaches consisting in not (or randomly) filtering the
data ! From a practical point of view, we think our results give a theoretical
justification to heuristic approaches of FS and PS. While these hardness results
have the advantage of covering the basic notions of relevance found throughout
the literature (of course by investigating four particular definitions of relevance),
they have two technical commonpoints. First, the results are obtained by reduc-
tion from the same problem (Min-Set-Cover), but they do not stem from
a simple coding of the instance of Min-Set-Cover. Second, the proofs are
standardized: they all use the same reduction tool but in a different way. From a
technical point of view, the reduction technique makes use of blow-up reductions,
a class of reductions between optimization problems previously sparsely used in
Computational Learning Theory [HJLT94, NJ98a, NJS98]. Informally, blow-up
reductions (also related to self-improving reductions, [Aro94]) are reductions
which can be made from a problem onto itself: the transformation is such that

226 Richard Nock and Marc Sebban

it depends on an integer d which is used to tune the hardness result: the higher d,
the larger the inapproximability ratio obtained. Of course, there is a price to
pay : the reduction time is also an increasing function of d; however, sometimes,
it is possible to show that the inapproximability ratio can be blown-up e.g. up
to exponent d, whereas the reduction time increases reasonably as a function
of d [NJS98].

The remaining of this paper is organized as follows. After a short preliminary,
the two remaining parts of the paper address separately PS and FS. Since all our
results use reductions from the same problem, we detail one proof to explain the
nature of self-improving reductions, and give proof sketches for the remaining
results.

2 Preliminary

Let LS be some learning sample. Each element of LS is an example consisting
of an observation and a class. We suppose that the observations are described
using a set V of n Boolean (0/1) variables, and there are only two classes, named
”positive” (1) and ”negative” (0) respectively. The basis for all our reductions
is the minimization problem Min-Set-Cover:

Name: Min-Set-Cover.
Instance: a collection C = {c1, c2, ..., c|C|} of subsets of a finite set S =
{s1, s2, ..., s|S|} (|.| denotes the cardinality).
Solution: a set cover for S, i.e. a subset C′ ⊆ C such that every element
of S belongs to at least one member of C.
Measure: cardinality of the set cover, i.e. |C′|.

The central theorem which we use in all our results is the following one.

Theorem 1. [ACG+99, CK00] Unless NP ⊂ DTIME[nlog log n], the problem
Min-Set-Cover is not approximable to within (1− ε) log |S| for any ε > 0.

By means of words, theorem 1 says that any (time) efficient algorithm shall not
be able to break the logarithmic barrier log |S|, that is, shall not beat signifi-
cantly in the worst case the well-known greedy set cover approximation algo-
rithm of [Joh74]. This algorithm guarantees to find a solution to any instance of
Min-Set-Cover whose cost, |C′|, is not larger than

O(log |S|)× optMin-Set-Cover,

where optMin-Set-Cover is the minimal cost for this instance.
In order to state our results, we shall need particular complexity classes based
on particular time requirement functions. We say that a function is polylog(n)
if it is O(logc n) for some constant c, and quasi-polynomial, QP (n), if it is
O(npolylog(n)).

Sharper Bounds for the Hardness of Prototype and Feature Selection 227

3 The Hardness of Approximating Prototype Selection

A simple and formal objective to prototype selection can be thought of as an
information preserving problem as underlined in [BL97]. Fix some function f :
[0, 1] → [0, 1] satisfying the following properties:

1. f is symmetric about 1/2,
2. f(1/2) = 1 and f(0) = f(1) = 0,
3. f is concave.

Such functions are called permissible in [KM96]. Clearly, the binary entropy

H(x) = −x log(x)− (1 − x) log(1− x),

the Gini criterion
G(x) = 4x(1− x)

[KM96] and the criterion
A(x) = 2

√
x(1− x)

used in [KM96, SS98] are all permissible. Define p1(LS) as the fraction of positive
examples in LS, and p0(LS) as the fraction of negative examples in LS. Define
LSv=a to be for some variable v the subset of LS in which all examples have
value a (∈ {0, 1}) for v. Finally, define the quantity If (v, LS) defined as

If (v, LS) = f(p1(LS))−
(|LSv=1|

|LS| f(p1(LSv=1)) +
|LSv=0|
|LS| f(p1(LSv=0))

)
This quantity, with f replaced by the functions H(x), G(x) or A(x), repre-
sents the common information measure to split the internal nodes of decision
trees in all state-of-the-art decision tree learning algorithms (see for exam-
ple [BFOS84, KM96, Mit97, Qui94, SS98]).

One objective in prototype selection can be to reduce the number of examples
in LS while ensuring that any informative variable before will remain informative
after the removal. The corresponding optimization problem, which we call Min-
PSf (for any f belonging to the category fixed above), is the following one:

Name: Min-PSf

Instance: a learning sample LS of examples described over a set of n vari-
ables V = {v1, v2, ..., vn}.
Solution: a subset LS′ of LS such that ∀1 ≤ i ≤ n, If (vi, LS) > 0 ⇒
If (vi, LS′) > 0.
Measure: |LS′|.

There are two components in the self-improving reduction. The first one is
to prove a basic inapproximability theorem. The second one, an amplification
lemma, ”blows-up” the result of the theorem. Then, we give some consequences
illustrating the power of the amplification lemma.

228 Richard Nock and Marc Sebban

Theorem 2. Unless NP ⊂ DTIME[nlog log n], Min-PSf is not approximable
to within (1− ε) logn for any ε > 0.

Proof. We show that Min-PSf is as hard to approximate as Min-Set-Cover:
any solution to Min-Set-Cover can be polynomially translated to a solution
to Min-PSf of the same cost, and reciprocally. Given an instance of Min-Set-
Cover, we build a set LS of |C| positive examples and 1 negative example, each
described over |S| variables. We define a set {v1, v2, ..., v|S|} of Boolean variables,
in one-to-one correspondence with the elements of S. The negative example is
the all-0 example. Each positive example is denoted e1, e2, ..., e|C|. We construct
each positive example ej so that it encodes the content of the corresponding
set cj of C. Namely, ej[k] is 1 iff sk ∈ cj , and 0 otherwise. Here we suppose
obviously that each element of S is element of at least one element of C, which
means that ∀1 ≤ i ≤ n, If (vi, LS) > 0. Suppose there exists a solution to Min-
Set-Cover of cost c. Then, we put in LS′ the negative example, and all positive
examples corresponding to the solution to Min-Set-Cover. We see that for any
variable vj , there exists some positive example of LS′ having 1 in its jth com-
ponent, since otherwise the solution to Min-Set-Cover would not cover the
elements of S. It is straightforward to check that ∀1 ≤ i ≤ n, If (vi, LS′) > 0,
which means that LS′ is a solution to Min-PSf having cost c + 1.

Now, suppose that there exists a feasible solution to Min-PSf , of size c.
There must be the negative example inside LS′ since otherwise we would have
∀1 ≤ i ≤ n, If (vi, LS′) = 0. Consider all elements of C corresponding to the
c − 1 positive examples of LS′. If some element si of S were not covered, the
variable vi would be assigned to zero over all examples of LS′, be they positive
or negative. In other words, we would have If (vi, LS′) = 0, which is impossible.
In other words, we have build a solution of Min-Set-Cover of cost c− 1.

If we denote optMin-Set-Cover and optMin-PS the optimal costs of the
problems, we have immediately optMin-PS = optMin-Set-Cover + 1. A possi-
ble interpretation of theorem 1 is the following one [Aro94]: there exists some
O(nlog log n)-time reduction from some NP -hard problem, say “SAT” for exam-
ple, to Min-Set-Cover, such that

– to any satisfiable instance of “SAT” corresponds a solution to Min-Set-
Cover whose cost is α,

– unsatisfiable instance of “SAT” are such that any feasible solution to Min-
Set-Cover will be of cost > α(1 − ε) log |S| for any ε > 0.

This property is also called a hard gap in [Bel96].
If we consider the reduction from Min-Set-Cover to Min-PSf , we see that
the ratio between unsatisfiable and satisfiable instances of “SAT” is now

ρ =
α(1− ε) log n + 1

α + 1

For any ε′ > 0, if we choose 0 < ε < ε′ (this is authorized by theorem 1), we
have ρ > (1 − ε′) log n for Min-PSf , at least for sufficiently large instances of

Sharper Bounds for the Hardness of Prototype and Feature Selection 229

“SAT”. This concludes the proof of the theorem.

The amplification lemma is based on the following self-improving reduction.
Fix some integer value d > 1. Suppose we take again the instance of Min-
Set-Cover, but we create |S|d variables instead of the initial |S|. Each variable
represents now a d-tuple of examples. Suppose we number the variables vi1,i2,...,id

with i1, i2, ..., id ∈ {1, 2, ..., |S|}, to represent the corresponding examples. The
|C| + 1 old examples are replaced by |C|d + 1 examples described over these
variables, as follows:

– for any possible d-tuple (cj1 , cj2 , ..., cjd
) of elements of C, we create a positive

example ej1,j2,...,jd
, having ones in variable vi1,i2,...,id

iff

∀k ∈ {1, 2, ..., d}, sik
∈ cjk

,

and zeroes everywhere else. Thus, the Hamming weight of the example’s
description is exactly

∏d
k=1 |cjk

|. By this procedure, we create |C|d positive
examples,

– we add the all-zero example, having negative class.

We call LSd this new set of examples. Note that the time made for the reduction
is no more thanO(|S|d|C|d). The following lemma exhibits that the inapproxima-
bility ratio for Min-PSf actually grows as a particular function of d provided d
is confined to reasonable values, in order to keep an overall reduction time not
greater than O(nlog log n). Informally, this assumption allows to use the inap-
proximability ratio of theorem 1 for our reduction. For the sake of simplicity
in stating the lemma, we say that the reduction is feasible to state that this
assumption holds.

Lemma 1. Unless NP ⊂ DTIME[nlog log n], provided the reduction is feasible,
then Min-PSf is not approximable to within(

(1− ε) log n

d

)d

for any ε > 0.

Proof. Again, we suppose obviously that each element of S is element of at least
one element of C, which means that each variable vi1,i2,...,id

has

If (vi1,i2,...,id
, LSd) > 0

Note that any feasible solution to Min-PSf contains the negative example (same
reason as for theorem 2). Also, in any solution C′ = {c′1, c′2, ..., c′|C′|} to Min-
Set-Cover, the following property P is satisfied without loss of generality: any
element of C belonging to it has at least one element (of S) which is present
in no other element of C′, since otherwise the solution could be transformed
in polynomial time into a solution of lower cost (simply remove arbitrarily ele-
ments in C′ to satisfy P while keeping a cover of S). As P is satisfied, we call

230 Richard Nock and Marc Sebban

any subset of cardinality |C′| of S containing one such distinguished element for
each element of C′ a distinguished subset of S. Finally, remark that Min-PSf is
equivalent to the problem of covering the set Sd using elements of Cd, and the
minimal number of positive examples in LSd is exactly the minimal cost c′ of
the instance of this generalization of Min-Set-Cover. But, since P holds, cov-
ering Cd requires to cover any d-tuple of distinguished subsets of S and because
property P holds, c′ is at least cd where c is the optimal cost of the instance
of Min-Set-Cover. Also, if we take all d-tuples of elements of C′ feasible so-
lution to Min-Set-Cover, we get a feasible solution to the generalization of
Min-Set-Cover, which leads to the equality c′ = cd.

If we denote optMin-PS the optimal cost of Min-PSf on the new set of
examples LSd, we obtain that

optMin-PS = (optMin-Set-Cover)d + 1

Given that n = |S|d, and using the same ideas as for theorem 2, we obtain the
statement of the lemma.

What can we hope to gain by using lemma 1, which was not already proven by
theorem 2 ? It is easy to show that the largest inapproximability ratio authorized
by the same complexity assumption is

ρ = log
log

(
log n1−ε

log log n

)
n (1)

(by taking d = O(log log n)), which implies the simpler one:

Theorem 3. Unless NP ⊂ DTIME[nlog log n], Min-PSf is not approximable
to within

log(1−ε) log log n n

for any ε > 0.

Another widely encountered complexity hypothesis, stronger than the one of
theorem 3, is that NP �⊂ QP [CK00]. In that case, the result of theorem 3
becomes stronger:

Theorem 4. Unless NP ⊂ QP , ∃δ > 0 such that Min-PSf is not approximable
to within nδ.

Proof. We prove the result for δ < 1/e, and take d = (1−δ) logn. A good choice
of ε in theorem 2 proves the result.

The preceeding model takes into account the information of the variables to
select relevant prototypes. We now give a model for prototype selection based
on the notion of relevance with respect to a concept. For any set of examples
LS, denote as Copt(LS) the set of concept representations having minimal size,
and consistent with LS. The notion of size can be e.g. the overall number of

Sharper Bounds for the Hardness of Prototype and Feature Selection 231

variables of the concept (if a variable appears i times, it is counted i times).
The nature of the concepts is not really important: these could be decision
trees, decision lists, disjunctive normal form formulas, linear separators, as well
as simple clauses. Our negative results will force the concepts of Copt(LS) to
belong to a particularly simple subclass, expressible in each class. This notion
of relevance is closely related to a particular kind of ML algorithms in which
we seek consistent formulas with limited size: Occam’s razors [KV94, NJS98].
Formulated as an optimization problem, the Min-PS problem is the following
one:

Name: Min-PS.
Instance: a learning sample LS of examples described over a set of variables
{v1, v2, ..., vn}.
Solution: a subset LS′ of LS such that Copt(LS′) ⊆ Copt(LS).
Measure: |LS′|.

By means of words, PS is a problem of reducing the number of examples while
ensuring that concepts consistent and minimal with respect to the subset of
prototypes will also be valid for the whole set of examples. Our first result on
the inapproximability of this new version of Min-PS is the following one.

Theorem 5. Unless NP ⊂ DTIME[nlog log n], Min-PS is not approximable to
within (1− ε) log n for any ε > 0.

Proof. (sketch) The proof resembles the one of theorem 2. Given an instance
of Min-Set-Cover, we build a set LS of |S| positive examples and 1 negative
example, each described over |C| variables. We define a set {v1, v2, ..., v|C|} of
Boolean variables, in one-to-one correspondence with the elements of C. The neg-
ative example is the all-0 example. Each positive example is denoted e1, e2, ..., e|S|.
We construct each positive example ej so that it encodes the membership of sj

into each element of C. Namely, ej[k] is 1 iff sj ∈ ck, and 0 otherwise. Similarly
to theorem 2, the least number of examples which can be kept is exactly the cost
of the optimal solution to Min-Set-Cover, plus one.

The proof is similar to that of theorem 2, with the following remark on the
minimal concepts. It can be shown that minimal concepts belonging to each of
the classes cited before (trees, lists, etc.) will contain a number of variables equal
to the minimal solution to Min-Set-Cover, and each will be present only once.
The reduction is indeed very generic and similar results were previously obtained
by e.g. [NG95] (for linear separators and even multilinear polynomials), [NJ98b]
(for decision lists), [HR76, HJLT94] (for decision trees), [Noc98] (for Disjunctive
Normal Form formulas and simple clauses). From that, all minimal concepts will
be equivalent to a simple clause whose variables correspond to C′. Property P
in lemma 1 can still be used.

The amplification lemma follows from a particular self-improving reduction.
Again, fix some integer value d > 1. Suppose we take again the instance of Min-
Set-Cover, but we create d|C| variables instead of the initial |C|. Each variable

232 Richard Nock and Marc Sebban

is written vi,j to denote the jth copy of initial variable i, with i = 1, 2, ..., |C|
and j = 1, 2, ..., d. The |S| + 1 old examples are replaced by |S|d + 1 examples
described over these variables, as follows:

– for any possible d-tuple (sj1 , sj2 , ..., sjd
) of elements of S, we create a posi-

tive example ej1,j2,...,jd
, having ones in variable vk,l iff sjl

∈ ck, and zeroes
everywhere else. By this procedure, we create |C|d positive examples,

– we add the all-zero example, having negative class.

We call LSd this new set of examples. Note that the time made for the reduc-
tion is no more than O(|S|d|C|d). The following lemma is again stated under
the hypothesis that the reduction is feasible, that is, takes no more time than
O(nlog log n), to keep the same complexity assumption as in theorem 1 (proof
omitted).

Lemma 2. Unless NP ⊂ DTIME[nlog log n], provided the reduction is feasible,
then Min-PS is not approximable to within(

(1 − ε) log
[n

d

])d

for any ε > 0.

What can we hope to gain by using lemma 2, which was not already proven by
theorem 5 ? It is easy to show that the largest inapproximability ratio authorized
by the same complexity assumption is now

ρ = loglog log(n
log log n)1−ε

n (2)

which in turn implies the following one (greater than eq. 1):

Theorem 6. Unless NP ⊂ DTIME[nlog log n], Min-PS is not approximable to
within

loglog log(n1−ε) n

for any ε > 0.

With a slightly stronger hypothesis (and using d = O(polylog(n))), we obtain

Theorem 7. Unless NP ⊂ QP , ∀c > 0, Min-PS is not approximable to within
nlogc n log log log n.

With respect to 1, lemma 2 brings results much more negative provided stronger
complexity assumptions are made. [PR94] make the very strong complexity as-
sumption NP �⊂ DTIME(2nΩ(1)

). This is the strongest complexity assumption,
since NP is definitely contained in DTIME(2poly(n)). Using this hypothesis
with d = nΩ(1), we obtain the following, very strong result:

Theorem 8. Unless NP ⊂ DTIME(2nΩ(1)
), ∃γ > 0 such that Min-PS is not

approximable to within
2nγ log log n

Sharper Bounds for the Hardness of Prototype and Feature Selection 233

What theorem 8 says is that approximating prototype selection up to exponential
ratios

2nγ+o(1)

will be hard. Note that storing the examples would require 2n examples in the
worst case. Up to what is precisely hidden in the γ notation, approximating
Min-PS might not be efficient at all with respect to the storing of all examples.

4 The Hardness of Approximating Feature Selection

The first model of feature selection is related to the distribution of the examples
in LS. Let Vi be the set of all variables except vi, i.e.

Vi = {v1, v2, ..., vi−1, vi+1, ..., vn}

Denote by v\i a value assignment to all variables in Vi.

Definition 1. [JKP94] A variable vi is strongly relevant iff there exists some
v, y and v\i for which Pr(vi = v, Vi = v\i) > 0 such that

Pr(Y = y|vi = v, Vi = v\i) �= Pr(Y = y|Vi = v\i)

Definition 2. [JKP94] A variable vi is weakly relevant iff it is not strongly
relevant, and there exists a subset of features V ′

i of Vi for which there exists
some v, y and v′\i with Pr(vi = v, V ′

i = v′\i) > 0 such that

Pr(Y = y|vi = v, V ′
i = v′\i) �= Pr(Y = y|V ′

i = v′\i)

In other words, a feature is weakly relevant if it becomes strongly relevant af-
ter having deleted some subset of features. We now show that under these two
definitions are hidden algorithmic problems of very different complexities. We
formulate the selection of relevant features as an optimization problem by focus-
ing on the class conditional probabilities, following the definition of coherency
which we give below:

Definition 3. Given a whole set V of features with which LS is described, a
subset V ′ of V is said to be coherent iff for any class y and any observation s
described with V whose restriction to V ′ is noted s′, we have

Pr(Y = y|V = s) = Pr(Y = y|V ′ = s′)

By means of words, coherency aims at keeping the class conditional probabilities
between the whole set of variables and the selected subset. Formulated as an
optimization problem, the Min-S-FS problem is the following one:

– Name: Min-S-FS.
– Instance: a learning sample LS of examples described over a set of variables

V = {v1, v2, ..., vn}.

234 Richard Nock and Marc Sebban

– Solution: a coherent subset V ′ of V containing strongly relevant features
w.r.t. LS.

– Measure: |V ′|.

The Min-W-FS problem is the following one:

– Name: Min-W-FS.
– Instance: a learning sample LS of examples described over a set of variables

V = {v1, v2, ..., vn}.
– Solution: a coherent subset V ′ of V containing weakly relevant features

w.r.t. LS.
– Measure: |V ′|.

Since strong relevance for a variable is not influenced by its peers, we easily
obtain the following theorem

Theorem 9. Minimizing Min-S-FS is polynomial.

We now show that Min-W-FS is much more difficult to approximate.

Theorem 10. Unless NP ⊂ DTIME[nlog log n], Min-W-FS is not approx-
imable to within (1 − ε) logn for any ε > 0.

Proof. The reduction is the same as for theorem 5.

The result of theorem 10 shows that Min-W-FS is hard, but it does not
rule out the possibility of efficient feature selection algorithms, since the ratio
of inapproximability is quite far from critical bounds of order nγ (given that
the number of features is n). We now show that theorem 10 is also subject to
be amplified so that we can effectively remove the possibility of efficient feature
selection. Fix some integer value d > 1. Suppose we take again the instance
of Min-Set-Cover of theorem 5, but we create |C|d variables instead of the
initial |C|. Each variable represents now a d-tuple of elements of C. Suppose we
number the variables vi1,i2,...,id

with i1, i2, ..., id ∈ {1, 2, ..., |C|}, to represent the
corresponding elements of C. The |S|+ 1 old examples are replaced by |S|d + 1
examples described over these variables, as follows:

– for any possible d-tuple (sj1 , sj2 , ..., sjd
) of elements of S, we create a positive

example ej1,j2,...,jd
, having ones in variable vi1,i2,...,id

iff

∀k ∈ {1, 2, ..., d}, sjk
∈ cjk

,

and zeroes everywhere else. By this procedure, we create |S|d positive exam-
ples,

– we add the all-zero example, having negative class.

We call LSd this new set of examples. The reduction time is no more than
O(|S|d|C|d). The following lemma is stated under the same hypothesis as for
lemma 2.

Sharper Bounds for the Hardness of Prototype and Feature Selection 235

Lemma 3. Unless NP ⊂ DTIME[nlog log n], provided the reduction is feasible,
Min-W-FS is not approximable to within(

(1− ε) log n

d

)d

for any ε > 0.

An immediate consequence is the following.

Theorem 11. Unless NP ⊂ QP , ∃δ > 0 such that Min-W-FS is not approx-
imable to within nδ.

In other words, up to what is be the maximal δ, theorem 11 shows that any
non trivial algorithm cannot achieve a significant worst-case approximation of
the Min-W-FS problem, with respect to the simple keeping of all variables.

Our second model for feature relevance defines it with respect to the target
concept [BL97].

Definition 4. [BL97] A variable vi is said to be relevant to the target concept c
iff there exists a pair of examples eA and eB in the instance space such that their
observations differ only in their assignment to vi and they have a different class.

From this, [BL97] define the following complexity measure.

Definition 5. [BL97] Given a sample LS and a set of concept C, r(LS, C) is
the number of features relevant using definition 4 to a concept in C that, out of
all those whose error over LS is least, has the fewest relevant features.

We call Cmin(LS) to be the set of concepts from C whose error on LS is least.
It is straightforward to check that in definition 5, r(LS, C) defines the optimum
of the following minimization problem.

Name: Min-FS.
Instance: a learning sample LS of examples described over a set of variables
V = {v1, v2, ..., vn}, a class of concept C.
Solution: a subset V ′ of V such that there exists a concept in Cmin(LS)
which is described over V ′.
Measure: the cardinality of the subset of V ′ consisting of relevant features
according to definition 4.

A result stated in the paper of [BL97] says that Min-FS is at least as hard to
approximate as the Min-Set-Cover problem (thus, we get the inapproxima-
bility ratio of theorem 1). On the other hand, the greedy set cover algorithm
of [Joh74] can be used to approximate r(LS, C) when C is chosen to be the set
of monomials. If we follow [KV94] using a comment of [BL97], the number of
variables chosen is no more than

r(LS, monomials)× log |LS|,

236 Richard Nock and Marc Sebban

but |LS| can theoretically be as large as 2n. The question is therefore to what
extent we can increase the inapproximability ratio to come as close as possible
to the trivial barrier n (we keep all variables). Actually, it can easily be shown
that the amplification result of lemma 1 still holds with the reduction allowing
to prove the equivalence of Min-Set-Cover and Min-FS. Therefore, we get

Lemma 4. Unless NP ⊂ DTIME[nlog log n], provided the reduction is feasible,
then Min-FS is not approximable to within(

(1− ε) log n

d

)d

for any ε > 0.

Similarly to theorem 4, we also get as a consequence:

Theorem 12. Unless NP ⊂ QP , ∃δ > 0 such that Min-FS is not approximable
to within nδ.

References

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, Marchetti Spaccamela
A., and Protasi M. Complexity and Approximation. Combinatorial Opti-
mization Problems and their Approximability Properties. Springer-Verlag,
Berlin, 1999. 226

[Aro94] S. Arora. Probabilistic checking of proofs and hardness of approximation
problems. Technical Report CS-TR-476-94, Princeton University, 1994.
225, 228

[Bel96] M. Bellare. Proof checking and Approximation: towards tight results.
SIGACT news, 1996. 225, 228

[BFOS84] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984. 227

[BL97] A. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, pages 245–272, 1997. 225, 227,
235

[Blu94] A. Blum. Relevant examples and relevant features: Thoughts from compu-
tational learning theory. In AAAI Fall Symposium (survey paper), 1994.
224

[CK00] P. Crescenzi and V. Kann. A Compendium of NP-Optimization problems.
WWW-Available at http://www.nada.kth.se/∼viggo/wwwcompendium/,
2000. 226, 230

[HJLT94] T. Hancock, T. Jiang, M. Li, and J. Tromp. Lower bounds on learning
decision lists and trees. In Proc. of the Symposium on Theoretical Aspects
of Computer Science, 1994. 225, 231

[HR76] L. Hyafil and R. Rivest. Constructing optimal decision trees is np-
complete. Inform. Process. Letters, pages 15–17, 1976. 231

[JKP94] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the
subset selection problem. In Proc. of the 11 th International Conference
on Machine Learning, pages 121–129, 1994. 233

Sharper Bounds for the Hardness of Prototype and Feature Selection 237

[Joh74] D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sci., pages 256–278, 1974. 226, 235

[KKLP97] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the hardness of
approximating MAX k-CUT and its dual. Chicago Journal of Theoretical
Computer Science, 2, 1997. 225

[KM96] M.J. Kearns and Y. Mansour. On the boosting ability of top-down decision
tree learning algorithms. Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, pages 459–468, 1996. 227

[Koh94] R. Kohavi. Feature subset selection as search with probabilistic estimates.
In AAAI Fall Symposium on Relevance, 1994. 224

[KS95] R. Kohavi and D. Sommerfield. Feature subset selection using the wrapper
model: overfitting and dynamic search space topology. In First Interna-
tional Conference on Knowledge Discovery and Data Mining, 1995. 224

[KS96] D. Koller and R. M. Sahami. Toward optimal feature selection. In Proc.
of the 13 th International Conference on Machine Learning, 1996. 224

[KV94] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learn-
ing Theory. M.I.T. Press, 1994. 231, 235

[Mit97] T. Mitchell. Machine Learning. McGraw-Hill, 1997. 227
[NG95] R. Nock and O. Gascuel. On learning decision committees. In Proc. of

the 12 th International Conference on Machine Learning, pages 413–420,
1995. 231

[NJ98a] R. Nock and P. Jappy. Function-free horn clauses are hard to approxi-
mate. In Proc. of the Eighth International Conference on Inductive Logic
Programming, pages 195–204, 1998. 225

[NJ98b] R. Nock and P. Jappy. On the power of decision lists. In Proc. of the 15 th

International Conference on Machine Learning, pages 413–420, 1998. 231
[NJS98] R. Nock, P. Jappy, and J. Sallantin. Generalized Graph Colorability and

Compressibility of Boolean Formulae. In Proc. of the 9 th International
Symp. on Algorithms and Computation, pages 237–246, 1998. 225, 226,
231

[Noc98] R. Nock. Learning logical formulae having limited size : theoretical aspects,
methods and results. PhD thesis, Université Montpellier II, 1998. Also
available as techreport RR-LIRMM-98014. 231

[PR94] K. Pillaipakkamnatt and V. Raghavan. On the limits of proper learn-
ability of subclasses of DNF formulae. In Proc. of the 7 th International
Conference on Computational Learning Theory, pages 118–129, 1994. 232

[Qui94] J. R. Quinlan. C4.5 : programs for machine learning. Morgan Kaufmann,
1994. 227

[Ska94] D. B. Skalak. Prototype and feature selection by sampling and random
mutation hill-climbing algorithms. In Eleventh International Conference
on Machine Learning, pages 293–301, 1994. 224

[SN00a] M. Sebban and R. Nock. Combining feature and prototype pruning by
uncertainty minimization. In Proc. of the 16 th International Conference
on Uncertainty in Artificial Intelligence, 2000. to appear. 224

[SN00b] M. Sebban and R. Nock. Prototype selection as an information-preserving
problem. In Proc. of the 17 th International Conference on Machine Learn-
ing, 2000. to appear. 224

[SS98] R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. In Proceedings of the Eleventh Annual ACM
Conference on Computational Learning Theory, pages 80–91, 1998. 227

238 Richard Nock and Marc Sebban

[WM97] D. Wilson and T. Martinez. Instance pruning techniques. In Proc. of the
14 th International Conference on Machine Learning, pages 404–411, 1997.
224

On the Hardness of Learning

Acyclic Conjunctive Queries

Kouichi Hirata �

Department of Artificial Intelligence
Kyushu Institute of Technology

Kawazu 680-4, Iizuka 820-8502, Japan
hirata@ai.kyutech.ac.jp

Abstract. A conjunctive query problem in relational database theory is
a problem to determine whether or not a tuple belongs to the answer of a
conjunctive query over a database. Here, a tuple and a conjunctive query
are regarded as a ground atom and a nonrecursive function-free definite
clause, respectively. While the conjunctive query problem is NP-complete
in general, it becomes efficiently solvable if a conjunctive query is acyclic.
Concerned with this problem, we investigate the learnability of acyclic
conjunctive queries from an instance with a j-database which is a finite
set of ground unit clauses containing at most j-ary predicate symbols.
We deal with two kinds of instances, a simple instance as a set of ground
atoms and an extended instance as a set of pairs of a ground atom and a
description. Then, we show that, for each j ≥ 3, there exist a j-database
such that acyclic conjunctive queries are not polynomially predictable
from an extended instance under the cryptographic assumptions. Also
we show that, for each n > 0 and a polynomial p, there exists a p(n)-
database of size O(2p(n)) such that predicting Boolean formulae of size
p(n) over n variables reduces to predicting acyclic conjunctive queries
from a simple instance. This result implies that, if we can ignore the
size of a database, then acyclic conjunctive queries are not polynomially
predictable from a simple instance under the cryptographic assumptions.
Finally, we show that, if either j = 1, or j = 2 and the number of element
of a database is at most l (≥ 0), then acyclic conjunctive queries are pac-
learnable from a simple instance with j-databases.

1 Introduction

From the viewpoints of both computational/algorithmic learning theory and
inductive logic programming, Džeroski et al. [11] have first shown the learnability
of (first-order) definite programs, called ij-determinate. Furthermore, the series
of their researches, Cohen [5–7, 9], Džeroski [11, 12, 21], Kietz [20–22] and Page [9,
26] have placed the theoretical researches for the learnability of logic programs
in one of the main research topics in inductive logic programming. Recently, it
has been deeply developed as [1, 18, 23, 24, 29, 30].
� This work is partially supported by Japan Society for the Promotion of Science,

Grants-in-Aid for Encouragement of Young Scientists (A) 11780284.

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 2 38- 2 5 0 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

On the other hand, a conjunctive query problem in relational database the-
ory [2, 4, 14, 16, 34] is a problem to determine whether or not a tuple belongs
to the answer of a conjunctive query over a database. Here, a tuple, a con-
junctive query, and a database in relational database theory are regarded as
a ground atom e = p(t1, . . . , tn), a nonrecursive function-free definite clause
C = p(x1, . . . , xn) ← A1, . . . , Am, and a finite set B of ground unit clauses in
inductive logic programming. Then, we can say that it is a problem to determine
whether or not e is provable from C over B, i.e., {C} ∪B e.

Since database schemes in relational database theory can be viewed as hyper-
graphs, many researchers such as [2, 4, 13, 14, 16, 34] have widely investigated the
properties of database schemes or hypergraphs, together with the acyclicity of
them1. It is known that the acyclicity frequently makes intractable problems in
cyclic cases tractable. The conjunctive query problem is such an example: While
the conjunctive query problem is NP-complete in general [15], Yannakakis has
shown that it becomes solvable in polynomial time if a conjunctive query is
acyclic [34]. Recently, Gottlob et al. have improved the Yannakakis’s result that
it is LOGCFL-complete [16].

The above acyclicity of a conjunctive query C is formulated by the associated
hypergraph H(C) = (V, E) to C. Here, V consists of all variables occurring in C
and E contains the set var(A) of all variables in A for each atom A in C. Then,
a conjunctive query C is acyclic if H(C) is acyclic, and a hypergraph is acyclic if
it is reduced to an empty hypergraph by GYO-reduction (see Section 2 below).

Concerned with the conjunctive query problem, in this paper, we investigate
the learnability of acyclic conjunctive queries from an instance with a j-database
which is a database containing at most j-ary predicate symbols.

According to Cohen [5–7], we deal with two kinds of instances, a simple
instance and an extended instance. A simple instance, which is a general setting
in learning theory, is a set of ground atoms. On the other hand, an extended
instance, which is a proper setting for inductive logic programming, is a set of
pairs of a ground atom and a description. Note that, if an extended instance
is allowed, then many programs that are usually written with function symbols
can be rewritten as function-free programs. Furthermore, some experimental
learning systems such as Foil [28] also impose a similar restriction.

The acyclic conjunctive query problem, which is LOGCFL-complete men-
tioned above, is corresponding to the evaluation problem of our learning prob-
lem. Schapire [32] has shown that, if the corresponding evaluation problem is
NP-hard, then the learning problem is not pac-learnable unless NP⊆P/Poly.
Then, we cannot apply Schapire’s result to our problem. Furthermore, since all
of the Cohen’s hardness results are based on the prediction preserving reduc-
tions to cyclic conjunctive queries [6, 7], we cannot apply them to our problem
directly, while our prediction preserving reduction is motivated by them.

In this paper, first we prepare some notions and definitions due to Cohen [5–
7]. Then, we show that, for each j ≥ 3, there exist a j-database such that
acyclic conjunctive queries are not polynomially predictable from an extended

1 Note here that the concept of acyclicity is different from one in [1, 29].

2 39On t he H ardne ss o f Le arning A c yc lic C o njunc t iv e Que rie s

instance under the cryptographic assumptions. In contrast, we show that, for
each n > 0 and a polynomial p, there exists a p(n)-ary database of size O(2p(n))
such that predicting Boolean formulae of size p(n) over n variables reduces to
predicting acyclic conjunctive queries from a simple instance. This result implies
that if we can ignore the size of a database, then acyclic conjunctive queries are
not polynomially predictable from a simple instance under the cryptographic
assumptions. Finally, we show that, if either j = 1, or j = 2 and the number
of element of a database is at most l (≥ 0), then acyclic conjunctive queries are
pac-learnable from a simple instance with j-databases.

Our hardness of learning acyclic conjunctive queries implies that they become
a typical example that collapses the equivalence between pac-learnability and
subsumption-efficiency. In general, the subsumption problem for nonrecursive
function-free definite clauses is NP-complete [3, 15]. It is also known that, for
both famous ij-determinate and k-local clauses, the subsumption problems for
them are solvable in polynomial time [22] and they are pac-learnable from a
simple (also an extended) instance [7, 9, 11]. In contrast, for acyclic conjunctive
queries, while the subsumption problem is LOGCFL-complete [16], it is not
polynomially predictable from an extended instance under the cryptographic
assumptions.

2 Preliminaries

In this paper, a term is either a constant symbol or a variable. An atom is of the
form p(t1, . . . , tn), where p is an n-ary predicate symbol and each ti is a term. A
literal is an atom or the negation of an atom. A positive literal is an atom and
a negative literal is the negation of an atom. A clause is a finite set of literals.
A definite clause is a clause containing one positive literal. A unit clause is a
clause consisting of just one positive literal. By the definition of a term, a clause
is always function-free.

A definite clause C is represented as

A ← A1, . . . , Am or A ← A1 ∧ . . . ∧Am,

where A and Ai (1 ≤ i ≤ m) are atoms. Here, an atom A is called the head of
C and denoted by hd(C), and a set {A1, . . . , Am} is called the body of C and
denoted by bd(C).

A definite clause C is ground if C contains no variables. A definite clause C
is nonrecursive if each predicate symbol in bd(C) is different from one of hd(C),
and recursive otherwise. Furthermore, a finite set of ground unit clauses is called
a database. A database is called a j-database if the arity of predicate symbols in
it is at most j.

According to the convention of relational database theory [2, 14, 16, 34], in
this paper, we call a nonrecursive definite clause containing no constant symbols
a conjunctive query.

Next, we formulate the concept of acyclicity. A hypergraph H = (V, E) con-
sists of a set V of vertices and a set E ⊆ 2V of hyperedges. For a hypergraph

2 40 K o uic hi H irat a

H = (V, E), the GYO-reduct GYO(H) [2, 13, 14, 16] of H is the hypergraph
obtained from H by repeatedly applying the following rules as long as possible:

1. Remove hyperedges that are empty or contained in other hyperedges;
2. Remove vertices that appear in ≤ 1 hyperedges.

Definition 1. A hypergraph H is called acyclic if GYO(H) is the empty hy-
pergraph, i.e., GYO(H) = (∅, ∅), and cyclic otherwise.

The associated hypergraph H(C) to a conjunctive query C is a hypergraph
(var(C), {var (L) | L ∈ C}), where var(S) denotes the set of all variables oc-
curring in S. Each hyperedge {var(L)} is sometimes labeled by the predicate
symbol of L.

Definition 2 (Gottlob et al. [16]). A conjunctive query C is called acyclic
(resp., cyclic) if the associated hypergraph H(C) to C is acyclic (resp., cyclic).

Example 1. Let C1, C2 and C3 be the following conjunctive queries:

C1 = p(x1, x2, x3) ← q(x1, y1, y2), r(x2, y2, y3), q(x3, z1, z2), r(x1, x2, z3),
C2 = p(x1, x2, x3) ← q(x1, y1, x3), r(x2, y2, y3), q(x3, z1, z2), r(x1, x2, z3),
C3 = p(x1, x2, x3) ← s(x1, x2), s(x2, x3), s(x3, x1).

Then, the associated hypergraphs H(C1), H(C2) and H(C3) to C1, C2 and C3

are described as Fig. 1. By the GYO-reduction, we can show that

GYO(H(C1)) = ({x1, x2, y2}, {{x1, x2}, {x1, y2}, {x2, y2}}) �= ∅,
but GYO(H(C2)) = (∅, ∅), so C1 is cyclic but C2 is acyclic. Furthermore, C3

is acyclic, because the GYO-reduction first removes all hyperedges labeled by s
from H(C3).

y1 y2 y3

z1 z2 z3

x1 x2 x3

y1 y2 y3

z1 z2 z3

x1 x2 x3

x2

x1 x3

s

s

s

p

H(C1) H(C2) H(C3)

Fig. 1. The associated hypergraphs H(C1), H(C2) and H(C3) to C1, C2 and C3.

In this paper, the relation denotes a usual provability relation; For a con-
junctive query C = A ← A1, . . . , Am, a database B and a ground atom e,
{C} ∪B e holds iff

2 41On t he H ardne ss o f Le arning A c yc lic C o njunc t iv e Que rie s

1. e ∈ B or
2. there exists a substitution θ such that e = Aθ and {A1θ, . . . , Amθ} ⊆ B.

Then, consider the following decision problem2:

ACQ (Acyclic Conjunctive Query) [16]
Instance: An acyclic conjunctive query C = p(x1, . . . , xn) ← A1, . . . , Am,

a database B, and a ground atom e = p(t1, . . . , tn).
Question: Does {C} ∪B e hold?

Theorem 1 (Gottlob et al. [16]). The problem ACQ is LOGCFL-complete.

The relationship between LOGCFL and other relevant complexity classes is sum-
marized in the following chain of inclusions:

AC0 ⊆ NC1 ⊆ LOG ⊆ NLOG ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ NC ⊆ P ⊆ NP,

where LOG denotes logspace and NLOG denotes nondeterministic logspace.

3 Models of Learnability

In this section, we introduce the models of learnability. The definitions and
notations in this section are due to Cohen [5–7].

Let C be a conjunctive query and B be a database. A ground atom e is a
fact of C if the predicate symbol of e is same as one of hd(C). In this paper,
assume that there exists no element of B of which predicate symbol is same as
hd(C).

For a conjunctive query C and a database B, the following set is called a
simple instance of (C,B):

{e | {C} ∪B e, e is a fact of C}.

For an element e of a simple instance of (C,B), we say that e is covered by
(C,B).

Furthermore, we introduce a description D, which is a finite set of ground
unit clauses. Then, the following set of pairs is called an extended instance of
(C,B):

{(e, D) | {C} ∪D ∪B e, e is a fact of C}.

For an element (e, D) of an extended instance of (C,B), we say that (e, D) is
covered by (C,B).

In his learnability results, Cohen has adopted both the simple instance [7]
and the extended instance [5, 6]. If the extended instance is allowed, then many
programs that are usually written with function symbols can be rewritten as
2 Gottlob et al. [16] have called the problem ACQ “Acyclic Conjunctive Query Output

Tuple (ACQOT)”.

2 42 K o uic hi H irat a

function-free programs. There is also a close relationship between extended in-
stances and “flattening” [10, 17, 24, 31]; Some experimental learning systems such
as Foil [28] also impose a similar restriction. See the papers [5, 6] for more detail.

In the following, we introduce some definitions and notions of learning theory.
Let X be a set, called a domain. Define a concept c over X to be a represen-

tation of some subset of X , and a language L to be a set of concepts. Associated
with X and L are two size complexity measures. We will write the size complex-
ity of some concept c ∈ L or instance e ∈ X as |c| or |e|, and we will assume that
this complexity measure is polynomially related to the number of bits needed to
represent c or e. We use the notation Xn (resp., Ln) to stand for the set of all
elements of X (resp., L) of size complexity no greater than n.

An example of c is a pair (e, b), where b = 1 if e ∈ c and b = 0 otherwise. If
D is a probability distribution function, a sample of c from X drawn according
to D is a pair of multisets S+, S− drawn from the domain X according to D,
S+ containing only positive examples of c, and S− containing only negative
examples of c.

Definition 3. A language L is polynomially predictable if there exists an al-
gorithm PacPredict and a polynomial function m(1/ε, 1/δ, ne, nt) so that for
every nt > 0, every ne > 0, every c ∈ Lnt , every ε (0 ≤ ε ≤ 1), every δ
(0 ≤ δ ≤ 1), and every probability distribution function D, PacPredict has
the following behavior:

1. given a sample S+, S− of c from Xne drawn according to D and containing
at least m(1/ε, 1/δ, ne, nt) examples, PacPredict outputs a hypothesis h
such that

prob(D(h − c) + D(c− h) > ε) < δ,

where the probability is taken over the possible samples S+ and S−.
2. PacPredict runs in time polynomial in 1/ε, 1/δ, ne, nt, and the number

of examples.
3. h can be evaluated in polynomial time.

The algorithm PacPredict is called a prediction algorithm for L and the func-
tion m(1/ε, 1/δ, ne, nt) is called the sample complexity of PacPredict.

Definition 4. A language L is pac-learnable if there exists an algorithm Pa-
cLearn so that

1. PacLearn satisfies all the requirements in Definition 3, and
2. on inputs S+ and S−, PacLearn always outputs a hypothesis h ∈ L.

If L is pac-learnable, then L is polynomially predictable, but the converse does
not hold in general; If L is not polynomially predictable, then L is not pac-
learnable.

In this paper, a language L is regarded as some set of conjunctive queries.
Furthermore, for a database B, L[B] denotes the set of pairs of the form (C,B)

2 43On t he H ardne ss o f Le arning A c yc lic C o njunc t iv e Que rie s

such that C ∈ L. Semantically, such a pair will denote either a simple or an
extended instance.

For some set B of databases, L[B] denotes the set {L[B] | B ∈ B}. Such a set
of languages is called a language family. In particular, the set of j-databases is
denoted by j-B, and the set of databases consisting of at most l atoms by Bl.

Definition 5. A language family L[B] is polynomially predictable if for every
B ∈ B there exists a prediction algorithm PacPredictB for L[B]. The pac-
learnability of a language family is defined similarly.

We will deal with the language ACQ as the set of all acyclic conjunctive queries.
Schapire [32] has shown that, if the evaluation problem is NP-hard, then

the learning problem is not pac-learnable unless NP⊆P/Poly. Since the problem
ACQ is corresponding to an evaluation problem for ACQ[B] and it is LOGCFL-
complete, we cannot apply Schapire’s result to our learning problem ACQ[B].

Pitt and Warmuth [27] have introduced a notion of reducibility between
prediction problems. Prediction-preserving reducibility is essentially a method of
showing that one language is no harder to predict than another.

Definition 6 (Pitt & Warmuth [27]). Let Li be a language over domain
Xi (i = 1, 2). We say that predicting L1 reduces to predicting L2, denoted by
L1 � L2, if there exists a function f : X1 → X2 (called an instance mapping)
and a function g : L1 → L2 (called a concept mapping) satisfying the following
conditions:

1. x ∈ c iff f(x) ∈ g(c);
2. the size complexity of g is polynomial in the size complexity of c;
3. f(x) can be computed in polynomial time.

Theorem 2 (Pitt & Warmuth [27]). Suppose that L1 � L2.

1. If L2 is polynomially predictable, then so is L1.
2. If L1 is not polynomially predictable, then neither is L2.

For some polynomial p, let BFp(n)
n be the class of Boolean formulae over n

variables of size at most p(n), and let BFp(n) =
⋃

n≥1 BFp(n)
n . Then:

Theorem 3 (Kearns & Valiant [19]). BFp(n) is not polynomially predictable
under the cryptographic assumptions that inverting the RSA encryption func-
tion, recognizing quadratic residues and factoring Blum integers are solvable in
polynomial time.

4 The Hardness of Predicting Acyclic Conjunctive
Queries

In this section, we discuss the hardness of predicting acyclic conjunctive queries.
Note that the following proofs are motivated by Cohen (Theorem 5 in [6] and
Theorem 9 in [7]).

2 44 K o uic hi H irat a

If we can receive an example as a ground clause, Kietz [20, 21] implicitly
has shown that acyclic conjunctive queries consisting of literals with at most
j-ary predicate symbols (j ≥ 2) are not pac-learnable unless RP = PSPACE,
without databases as background knowledge. Under the same setting, Cohen [8]
has strengthened this result that they are not polynomially predictable under
the cryptographic assumptions.

On the other hand, by using Cohen’s result (Theorem 3 in [6]), we can claim
that, for each j ≥ 3, the recursive version of ACQ[j-B] is not polynomially
predictable from an extended instance under the cryptographic assumptions. In
contrast, we obtain the following theorem.

Theorem 4. For each n ≥ 0, there exists a database B ∈ 3-B such that BFp(n)
n �

ACQ[B] from an extended instance.

Proof. Let e = e1 . . . en ∈ {0, 1}n be a truth assignment and F ∈ BFp(n)
n be a

Boolean formula of size polynomial p(n) over Boolean variables {x1, . . . , xn}.
First, construct the following database B ∈ 3-B:

B =
{

and(0, 0, 0), and(0, 1, 0), or(0, 0, 0), or(0, 1, 1), not(0, 1)
and(1, 0, 0), and(1, 1, 1), or(1, 0, 1), or(1, 1, 1), not(1, 0)

}
.

By the definition of an extended instance, an instance mapping f must map
e to a fact and a description. Then, construct the following instance mapping f :

f(e) = (p(1), {bit1(e1), . . . , bitn(en)}).
Note that F is represented as a tree of size polynomial p(n) such that each

internal node is labeled by ∧, ∨ or ¬, and each leaf is labeled by a Boolean
variable in {x1, . . . , xn}. Each internal node ni of F (1 ≤ i ≤ p(n)) has one (ni

is labeled by ¬) or two (ni is labeled by ∧ or ∨) input variables and one output
variable yi. Let Li be the following literals:

Li =

⎧⎨⎩
and(zi1, zi2, yi) if ni is labeled by ∧,
or(zi1, zi2, yi) if ni is labeled by ∨,
not(zi1, yi) if ni is labeled by ¬.

Here, zi1 and zi2 denote input variables of ni. Construct the following concept
mapping g:

g(F) = p(y) ← (
∧

1≤j≤n bitj(xj)), (
∧

1≤i≤p(n) Li),

where y is a variable in (
∧

1≤i≤p(n) Li) corresponding to an output of F .
Since F is represented as a tree, g(F) is an acyclic conjunctive query. Fur-

thermore, it holds that e satisfies F iff f(e) is covered by (g(F), B). In other
words, e satisfies F iff

{g(F)} ∪ {bit1(e1), . . . , bitn(en)} ∪B p(1).

Hence, the statement holds. ��

By incorporating Theorem 4 with Theorem 3, we obtain the following theorem:

2 45On t he H ardne ss o f Le arning A c yc lic C o njunc t iv e Que rie s

Theorem 5. For each j ≥ 3, ACQ[j-B] is not polynomially predictable from an
extended instance under the cryptographic assumptions.

Hence, we can conclude that not only the recursive version but also the non-
recursive version of ACQ[j-B] (j ≥ 3) is not polynomially predictable from an
extended instance under the cryptographic assumptions.

On the other hand, consider the predictability of ACQ[B] from a simple
instance.

Theorem 6. For each n ≥ 0, there exists a database B ∈ p(n)-B of size O(2p(n))
such that BFp(n)

n � ACQ[B] from a simple instance.

Proof. Let e and F be the same as Theorem 4. Also let B be the same as
Theorem 4. Then, construct the following database B′:

B′ = B ∪ {ext(0, . . . , 0), . . . , ext(1, . . . , 1)}.
Here, ext is a new p(n)-ary predicate symbol. Note that the size of B′ is O(2p(n)).

By using the same literals Li (1 ≤ i ≤ p(n)) as Theorem 4, construct an
instance mapping f and a concept mapping g as follows:

f(e) = p(e1, . . . , en, 1),
g(F) = p(x1, . . . , xn, y) ← (

∧
1≤i≤p(n) Li), ext(Y).

Here, Y denotes the tuple of all p(n) variables occurring in
∧

1≤i≤p(n) Li and y

is a variable in (
∧

1≤i≤p(n) Li) corresponding to an output of F .
The GYO-reduct of the associated hypergraph H(g(F)) of g(F) first re-

moves all hyperedges except the hyperedge labeled by ext from H(g(F)), so
GYO(H(g(F)) = (∅, ∅) (see Fig. 2). Then, g(F) is an acyclic conjunctive query.
Furthermore, it is obvious that e satisfies F iff {g(F)} ∪ B′ f(e). Hence, the
statement holds. ��
Hence, we can conclude that, if we can ignore the size of a database, then ACQ[B]
is not polynomially predictable from a simple instance under the cryptographic
assumptions.

Let B be a database and f be an instance mapping in the proof of Theorem 6.
Consider the following concept mapping g′ similar as g:

g′(F) = p(x1, . . . , xn, y) ← ∧
1≤i≤p(n) Li.

Then, it holds that e satisfies F iff {g′(F)} ∪B f(e).
Furthermore, consider the following instance mapping f ′′, concept mapping

g′′ and database B′′:

f ′′(e) = p(e1, . . . , en),
g′′(F) = p(x1, . . . , xn) ← (

∧
1≤i≤p(n) Li), true(y),

B′′ = B ∪ {true(1)}.
Here, y is a variable in (

∧
1≤i≤p(n) Li) corresponding to an output of F . Then,

it also holds that e satisfies F iff {g′′(F)} ∪B′′ f ′′(e).
However, both g′(F) and g′′(F) are cyclic as Fig. 2. In order to avoid to

the cyclicity, we need to introduce a new p(n)-ary predicate symbol ext and a
database B′ of size O(2p(n)) in the proof of Theorem 6.

2 46 K o uic hi H irat a

ext

and

x1 x2 x3

y1 y2

y

not

or
p

and

x1 x2 x3

y1 y2

y

not

or
p

and

x1 x2 x3

y1 y2

y

not

or

p

true

g(F) g′(F) g′′(F)

Fig. 2. The associated hypergraphs to g(F), g′(F) and g′′(F), where F = (x1 ∧ x2) ∨
¬x3. Note that g(F) is acyclic but g′(F) and g′′(F) are cyclic.

5 Simple Learnable Subclasses of Acyclic Conjunctive
Queries

Since the assumption of Theorem 6 is too strong, in this section, we discuss
the learnable subclass of ACQ[j-B] from a simple instance. First, the following
theorem holds:

Theorem 7. ACQ[1-DB] is pac-learnable from a simple instance.

Proof. We can assume that a target conjunctive query has no variables that
occur in the body but not in the head. Let n be an arity of a target predicate
p, and m be the number of distinct predicate symbols in B ∈ 1-DB, where m
predicate symbols are denoted by q1, . . . , qm. We set an initial hypothesis C as:

C = p(x1, . . . , xn) ←
∧

1≤i≤n

∧
1≤j≤m qj(xi).

Then, by applying Valiant’s technique of learning monomials [33] to C, the
statement holds. ��

Consider the case that j = 2. In the following, we discuss the learnability of
ACQ[2-Bl], where Bl denotes the set of databases consisting of at most l atoms.

We prepare some notions of k-local conjunctive queries according to [7, 9].
A variable x is adjacent to a variable y if they appear in the same literal of
the conjunctive query, and connected to y if either x is adjacent to y or there
exists a variable z such that x is adjacent to z and z is connected to y. The
locale of a variable x is the set of literals that contain either x or some variable
connected to x. The locality of a variable is the cardinality of the largest locale
of it. The locality of a conjunctive query is the cardinality of the largest locale
of any variable in it. A conjunctive query is k-local if the locality of it is at most
k, and we denote the set of all k-local conjunctive queries by k-Local.

Theorem 8 (Cohen [7], Cohen & Page [9]). For any fixed k ≥ 0 and j ≥ 0,
k-Local[j-B] is pac-learnable from a simple instance.

2 47On t he H ardne ss o f Le arning A c yc lic C o njunc t iv e Que rie s

For B ∈ 2-B, let GB denote the labeled directed multigraph (VB , EB) such
that VB is a set of constant symbols in B and EB is a set of pairs (a, b) labeled
by q if there exists an atom q(a, b) ∈ B. Furthermore, we denote the length of
longest path in GB in which each edge occurs at most once by len(GB).

Lemma 1. Let B ∈ 2-B and suppose that the predicate symbol p does not occur
in B. Also let C be the following acyclic conjunctive query:

C = p(x) ← q1(x, y1), q2(y1, y2), . . . , qm(ym−1, ym),

where qi occurs in B and yj �= yk (j �= k). For a ground atom p(a), if {C}∪B
p(a) and m ≥ len(GB), then there exists an acyclic conjunctive query C′:

C′ = p(x) ← r1(x, y1), r2(y1, y2), . . . , rm′(ym′−1, ym′),

such that ri occurs in B, yj �= yk (j �= k), {C ′} ∪B p(a), and m′ ≤ len(GB).

Proof. By removing the literals corresponding to the cycle in GB accessible from
a in C, and by applying an adequate renaming substitution, we can obtain the
above C′. Such a cycle does exist because m ≥ len(GB). ��
Theorem 9. For a fixed l ≥ 0, ACQ[2-Bl] is pac-learnable from a simple in-
stance.

Proof. For each B ∈ Bl, let m1 and m2 be the number of atoms in B with unary
and binary predicate symbols, respectively. Note that m1 + m2 = l. Let C ∈
ACQ[B] be a target acyclic conjunctive query with the head p(x1, . . . , xn).

Since C is acyclic, there exist no two literals q(y1, y2) and r(z1, z2) in bd(C)
such that both q and r occur in B, y1 and y2 are connected to xi (1 ≤ i ≤ r),
z1 and z2 are connected to xj (1 ≤ j ≤ r), xi �= xj , and one of y1 = z1, y1 = z2,
y2 = z1 or y2 = z2 holds. Then, for each variable xi, any locale of xi consisting
of atoms with binary predicate symbols whose arguments’ variables are distinct
is regarded as a tree such that the root is labeled by xi.

For each xi, consider a complete m2-ary tree Ti such that the root is labeled
by xi, each node is labeled by a mutually distinct new variable, each edge is
labeled by possible binary predicate symbol in B (at most m2), and the depth
is at most len(GB) (by Lemma 1). Then, each locale of xi is corresponding
to a subtree of Ti rooted by xi. Since len(GB) ≤ m2, each locale contains at
most mm2

2

(
(m1 + m2)m

m2
2

)
≤ ll

l+1 atoms. Here, the first and the second mm2
2

represent the maximum number of atoms with binary predicate symbols and one
of nodes in a subtree of T associated with a locale. Also m1 and m2 in m1 + m2

represent the maximum number of atoms with unary predicate symbols and one
of atoms with binary predicate symbols such that the first argument’s variable
is equal to the second one, respectively. Note here that the number of all locales
of xi, which is the total number of subtrees of Ti rooted by xi, is independent
from n.

The above discussion holds for each xi (1 ≤ i ≤ n). Hence, the target acyclic
conjunctive query is ll

l+1-local, by considering all locales constructed from Ti

for each xi. Since the number of all locales is bounded by polynomial on n, the
statement holds by Theorem 8. ��

2 48 K o uic hi H irat a

Theorem 9 is a similar result as pac-learnability of arbitrary conjunctive queries
with a forest introduced by Horváth and Turán [18]. In Theorem 9, a target
conjunctive query is restricted to be acyclic but a database is given as an arbi-
trary 2-database. In contrast, in [18], a database is restricted to be a forest but
a target conjunctive query is arbitrary.

6 Learnability and Subsumption-Efficiency

We say that a clause C subsumes another clause D if there exists a substitu-
tion θ such that Cθ ⊆ D. The subsumption problem for a language L is the
problem of whether or not C subsumes D for each C,D ∈ L. As the corollary
of the LOGCFL-completeness of ACQ, Gottlob et al. [16] have discussed the
subsumption problem for ACQ.

In general, the subsumption problem for nonrecursive function-free definite
clauses is NP-complete [3, 15]. As the tractable cases for the subsumption prob-
lem, it is known the following theorem. Here, i-DepthDeterm denotes the set
of all determinate clauses of which the variable depth is at most i [11].

Theorem 10 (Kietz & Lübbe [22]; Gottlob et al. [16]). The subsump-
tion problems for i-DepthDeterm and k-Local (i, j, k ≥ 0) are solvable in
polynomial time [22]. Also the subsumption problem for ACQ is LOGCFL-
complete [16].

It is also known that both i-DepthDeterm[j-B] [11] and k-Local[j-B] [7,
9] (i, j, k ≥ 0) are pac-learnable from a simple instance, so from an extended
instance with an empty description. On the other hand, ACQ[j-B] (j ≥ 3) is not
polynomially predictable from an extended instance under the cryptographic
assumptions by Theorem 5. Hence, the language ACQ is a typical example that
collapses the equivalence between pac-learnability from an extended instance
and subsumption-efficiency.

7 Conclusion

In this paper, we have discussed the learnability for acyclic conjunctive queries.
First, we have shown that, for each j ≥ 3, ACQ[j-B] is not polynomially pre-
dictable from an extended instance under the cryptographic assumptions. Also
we have shown that, for each n ≥ 0 and a polynomial p, there exists a database
B ∈ p(n)-B of size O(2p(n)) such that BFp(n)

n � ACQ[B] from a simple instance.
This implies that, if we can ignore the size of a database, then ACQ[B] is not
polynomially predictable from a simple instance under the cryptographic as-
sumptions. Finally, we have shown that ACQ[1-B] and ACQ[2-Bl] (l ≥ 0) are
pac-learnable from a simple instance. It remains open whether ACQ[j-B] (j ≥ 2)
and ACQ[j-Bl] (j ≥ 3, l ≥ 0) are pac-learnable or not polynomially predictable
from a simple instance.

2 49On t he H ardne ss o f Le arning A c yc lic C o njunc t iv e Que rie s

In Section 6, we have claimed that the language ACQ collapses the equiv-
alence between pac-learnability from an extended instance and subsumption-
efficiency. It also remains open whether or not pac-learnability from a simple
instance and subsumption-efficiency are equivalent to any language.

Various researches have investigated the learnability by using equivalence
and membership queries such as [1, 23, 24, 30, 29]. Note that our result in this
paper implies that ACQ[j-B] (j ≥ 3) is not learnable using equivalence queries
alone. It is a future work to analyze the learnability of ACQ[j-B] (j ≥ 3) by
using membership and equivalence queries, and by extending to one containing
function symbols or recursion. It is also a future work to analyze the relationship
between our acyclicity and the acyclicity introduced by [1, 29].

Fagin [14] has given the degree of acyclicity; α-acyclic, β-acyclic, γ-acyclic
and Berge-acyclic. In particular, he has shown the following chain of implication
for any hypergraph H : H is Berge-acyclic ⇒ H is γ-acyclic ⇒ H is β-acyclic ⇒
H is α-acyclic (none of the reverse implication holds in general). Acyclicity in
the literature such as [2, 4, 13, 16, 34] and also in this paper is corresponding to
Fagin’s α-acyclicity [14]. Note that none of the results in this paper implies the
predictability of the other degrees of acyclicity. It is a future work to investigate
the relationship between the degree of acyclicity and the learnability.

Acknowledgment

The author would like to thank Hiroki Arimura in Kyushu University for a
motivation of this paper and insightful comments. He also would like to thank
Akihiro Yamamoto in Hokkaido University and Shinichi Shimozono in Kyushu
Institute of Technology for constructive discussion. Finally, he would like to
thank anonymous referees of ALT2000 for valuable comments.

References

1. Arimura, H.: Learning acyclic first-order Horn sentences from entailment,
Proc. 8th ALT, LNAI 1316, 432–445, 1997.

2. Beeri, C., Fagin, R., Maier, D. and Yannakakis, M.: On the desirability of acyclic
database schemes, Journal of the ACM 30, 479–513, 1983.

3. Baxter, L. D.: The complexity of unification, Doctoral Thesis, Department of Com-
puter Science, University of Waterloo, 1977.

4. Chekuri, C. and Rajaraman, A.: Conjunctive query containment revisited , Theo-
retical Computer Science 239, 211–229, 2000.

5. Cohen, W. W.: Pac-learning recursive logic programs: Efficient algorithms, Journal
of Artificial Intelligence Research 2, 501–539, 1995.

6. Cohen, W. W.: Pac-learning recursive logic programs: Negative results, Journal of
Artificial Intelligence Research 2, 541–573, 1995.

7. Cohen, W. W.: Pac-learning non-recursive Prolog clauses, Artificial Intelli-
gence 79, 1–38, 1995.

8. Cohen, W. W.: The dual DFA learning problem: Hardness results for programming
by demonstration and learning first-order representations, Proc. 9th COLT, 29–40,
1996.

2 5 0 K o uic hi H irat a

9. Cohen, W. W. and Page Jr., C. D.: Polynomial learnability and inductive logic
programming: Methods and results, New Generation Computing 13, 369–409, 1995.

10. De Raedt, L. and Džeroski, S.: First-order jk-clausal theories are PAC-learnable,
Artificial Intelligence 70, 375–392, 1994.

11. Džeroski, S., Muggleton, S. and Russell, S.: PAC-learnability of determinate logic
programs, Proc. 5th COLT, 128–135, 1992.

12. Džeroski, S., Muggleton, S. and Russell, S.: Learnability of constrained logic pro-
grams, Proc. 6th ECML, LNAI 667, 342–347, 1993.

13. Eiter, T. and Gottlob, G.: Identifying the minimal transversals of a hypergraph
and related problems, SIAM Journal of Computing 24, 1278–1304, 1995.

14. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes,
Journal of the ACM 30, 514–550, 1983.

15. Garey, M. R. and Johnson, D. S.: Computers and intractability: A guide to the
theory of NP-completeness, W. H. Freeman and Company, 1979.

16. Gottlob, G., Leone, N. and Scarcello, F.: The complexity of acyclic conjunctive
queries, Proc. 39th FOCS, 706–715, 1998.

17. Hirata, K.: Flattening and implication , Proc. 10th ALT, LNAI 1720, 157–168,
1999.

18. Horváth, T. and Turán, G.: Learning logic programs with structured background
knowledge, in De Raedt, L. (ed.): Advances in inductive logic programming, 172–
191, 1996.

19. Kearns, M. and Valiant, L.: Cryptographic limitations on learning Boolean formulae
and finite automata, Journal of the ACM 41, 67–95, 1994.

20. Kietz, J.-U.: Some lower bounds for the computational complexity of inductive logic
programming, Proc. 6th ECML, LNAI 667, 115–123, 1993.

21. Kietz, J.-U. and Džeroski, S.: Inductive logic programming and learnability,
SIGART Bulletin 5, 22–32, 1994.

22. Kietz, J.- U. and Lübbe, M: An efficient subsumption algorithm for inductive logic
programming, Proc. 11th ICML, 130–138, 1994.

23. Khardon, R.: Learning function-free Horn expressions, Proc. 11th COLT, 154–165,
1998.

24. Khardon, R.: Learning range-restricted Horn expressions, Proc. EuroCOLT99,
LNAI 1572, 111–125, 1999.

25. Muggleton, S. (ed.): Inductive logic programming, Academic Press, 1992.
26. Page Jr., C. D. and Frisch, A. M: Generalization and learnability: A study of

constrained atoms, in [25], l29–161.
27. Pitt, L. and Warmuth, M. K.: Prediction preserving reduction, Journal of Com-

puter System and Science 41, 430–467, 1990.
28. Quinlan, J. R.: Learning logical definitions from relations, Machine Learning 5,

239–266, 1990.
29. Reddy, C. and Tadepalli, P.: Learning first-order acyclic Horn programs from

entailment, Proc. 8th ILP, LNAI 1446, 23–37, 1998.
30. Reddy, C. and Tadepalli, P.: Learning Horn definitions: Theory and application to

planning, New Generation Computing 17, 77–98, 1999.
31. Rouveirol, C.: Extensions of inversion of resolution applied to theory completion,

in [25], 63–92.
32. Schapire, E.: The strength of weak learning , Machine Learning 5, 197–227, 1990.
33. Valiant, L.: A theory of learnable, Communications of the ACM 27, 1134–1142,

1984.
34. Yannakakis, M.: Algorithms for acyclic database schemes, Proc. 7th VLDB, 82–94,

1981.

2 5 1On t he H ardne ss o f Le arning A c yc lic C o njunc t iv e Que rie s

������� ���	
��
��� �������
��� ����	 ��

���	�����	 ��������������� ��� ������
��

����� ����	
����� �������� ��	��
��� �������
	����� �����
�
	������� ���
��
��� �������

� ���������� 	
 ������
���� �������� �������� ���		� 	
 ��
	����
	� ��
���� ���
������
��� ���
����
��� ������ ��
����
��� ����	��� ������

 !"� ������!�	��� ������� ����	�� #" � �����
�������� 	
	
��	�
	��������������	����

� ���������� 	
 ������	�
� ���
����
��� �������� ���		� 	
 ������	�
�� ���
����
���
����	�� ��
����
��� ����	��� ������ #!"$!"� %�������� �	���� ����	��� #"&!'"#'�

����� �������� � �����	� ������	�

�
	������������	���	���

��������� ������� ���	��
�
	�
� �� ������
�� �		�
	� �������
����
���
(
�� �	������� �����
����
	� ����
�����
���
��� ����	��� �� ��
� ������

�
� ��	�	��� �	 ��� ���
!)����
*�� +�� ,�)+- �	 ���	��
*� ��� �	�!
����
����� 	
 ���� ��������� �
��� ��� �	����
�
	� ���	�
��� 	
 �)+
���	(� �����
��
�� ���� �
Æ����
�� ���	�
���� (
�� ������� ���	��
�
	��
.	(�����
�
� ��/�
��� �	 ������ ��� ���	��
�
	� �
�� 	
 	��
����
�
�)+ ���(�� �	 ��� ����� 	
 �	���� �
��	 ������ ������ ��
� ����
�� ���
���(�� �	 ������ �����
�
����
����� ��� �	 ���
	�� 	�!�
�� ���	��
!
�
	�
	� ���� ��������� 0	 ���
��� ��
�� ��� 1���	�
*�� ���
!)����
*
��
+�� ���	�
��� ,1�)+-
� ��	�	��� �� � ��(���	��
�
	� ���	�
���
	�
�)+� 2
�� 1�)+ ���	�
���� ��� ���	��
�
	� �
�� 	
 	��
���� �������
�	 "3�& 4 	
 ��� �	���� �)+ �	����
�
	� ���	�
��� (
�� "'' 4 ����!
���� ��� ���	(�� ��� ���(�� �	 ���	��
*�
����� (
��
� ��� ����� 	

�	���� �
��	 ������ 0�� �5���
������ ������� �	 ���	��
*� �
5 �����
�
���� �������� ��
�� 1�)+ ���	�
���
� ����������

� �������	�
��

�� ���� �� ��	���� �����	������� ��	����� �	 �� ������� ��� ��� ������ ���
������ ���� ��������	� �� ��� ����� ��������	 ���� ��� �!����� �� �����	����
��	����	� 	������ ��� ������ �"���		���	� �� �	 ��		�!�� �� !���� ��������������
����������� ���	�� �� ����������� ������������ #��� ��� ��� ��	����� �� ��	����
����������� ��� !� �� ���� ���� ������!�	�� 	�	���	 ��� ��	������� ��� ��!�	��
	�	���	�
�� ����� !�	�� ��	���� ����������� 	�	���	 �	 ���	������ �	 ��		� �
����� 	�	���	 ���� �	����� ������ ��� �� ���� ������	 �� ������� ����� ���
����	� $���� �� ��� ��� ��!�	�� 	�	���	� ��� �	�� ��%����	 �� ���� ��� ����
�
��	�������� ����� �	 �%������ ���� 	��	��	 �� ��� !��
 �� ����� &����	 �� ������
��� ����� '�" ��� �"���	��� ()*� +� ���	 ���
� ������!�	�� ��	���� �����������
	�	��� �	 �	�� �� �������,� ��-����� ���� ��	����	 �	��� ./� ������
� $�����
���� ��	���� �	 ������� �	 � 	�� �� ���	�%����� ��	����	�
��	� ��	����	 ��� �	��

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 2 5 2 - 2 6 3, 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

�� �����������	 �
� ��
����� �
� �� ��� �������� ������� �
� �����������
�	��
���
� �� ��� ������� �
� �
���� �� ������� ��
�����
�� ���� ������
� ��������
�� 	������ ����	������ ������� ���

� 	������ ��
������ ������� ������
�
��
��
��
� �
��
�����
�� ��������
���	����� �� ��
	���
��� 	������ ����	������
�������� ����
� ���
��� ����	 ���� ��
	�� ��
�����
�� ������� ���� ��� �
���
���
�� ���! �
� ���� ���� �
� ��������� ���������
�� �
� ������ ���� �
� ���
���� ������
���� "#$� ���� ��
�� ���
��� "%$ �
� �����
��
��
� 	������� ����
���
������� ����	 �
� ���
 �� ����
���� ���
��� �&��
����	 �
� ��
������ '��

���� �
� ����	������ ������� �
� ���
 ���
�� �� �����
� �� ���
������ ����	���
����� (������� �
� �����������
�	����
� �� ���
����� ����	��)��	 �
� ��
	��
���
��� ��������	 ��� 	�
� ������� ��� �
� ����� ��
	� ���� ��
������ �� �
� ����
����
� �� ���
�� �
� ��
����� �
� ������ �

�

� �
&���� �����
���� �������
��� ��������
�� �
�� ����� ���� �� ��������
� �
� ������ �������

�� ��� ������������ �
� ������ ������
���� ������� �� �
� ������� ��
����� �������
�� ��
���� �
� �������� ��� �� �
� ���������
���� � �� �����
��
�� ��
�	

�� �
� ������ �� ��
���� �
� ������� � �� �
�	�� �
� �� �����
������
����� ��
����� �
� ������ �
��	��� �� ���� �
�	�� �� �
� ����� �� ���
*��
��� �� �

�� ��� �� ��� �
����
+���
��� �� ���� ���
��� ��
	� ����	������

�����
����� �
��� �
� ����� ��
	��
�� �
��� ���� ����� �
���
� �� �
�� �
����
�� �� �������� ��
���� ��� ����	������
�	����
� �� ��� �������� ,
�
�	��
���
� �� �
���� -
�����)�� �������	
��)��	 �
� .-���/� �� -���
�	����
��
�
� ������ ����������� ��
������ �� ��� �

���� �
� ���� ���� �
���� ������ ��
����� ��
	� �� ������
 ����
�� �������
�� �
� ������ ��
��
 ��� �
� ������
�� �
� ��� �� ������� ���	
��� �� �
� ����
�� ������� -���
�	����
�
������
�� ����	��)� ��&�

�� 	������� �� 0
��1���2�� 	
��� ,
� ������� �
���� �

�
���
 -���
�	����
�� �
� ����	������ ���� �� ��� ��
	� ������� �� �
� �
�	�
�� ����
� ����� �
���
�� �
� ������� ����� ����	��)� ���
��� 	������ ��
	���

�� �
� ��&� �������� ��� ������
� �� ��� ��� �� 	������ ����	������ �� ����
������� ,
��� �� �������� %
�� 3� �
� -��� �����������
�	����
�
�� ���
��
������
�
�
�����
�� �&��
����� �� ������� 4� �
�
�����
���� �� -���
�	��
���
� �� ����	��)� ���
���

�� 	������� �� ���������� 5��
���� �
� ����������

�� ����������
�� 	���� �� ������� 6�

� ��� ����	
� ���
�����
� ������

�������	
��)��	 ����
� ��������
�� �����	��
��� �����
��� �� �
�
������ �� �
�
��
�� �� �
� ������� ����� ���� �
� �����&� �
��� ��
��� �������
�� ����� ��
��
��� ������
�
��
�� 1�
���� .789#/

� ��������
 ������
�	����
� ��� �
�
����
���� �� ���
 �
����	� : �� ����� �� ������ �� ��������� �� �
� �������
��� �
��
 ���
���� ���	
��
�� �
�� ���
��� �� ������
��� ��������� �
� �����
����
������ ������������
� �������
� �������� "3$� ��� ����������� �� ;������
�
��
�� ����
� ������! :���� �
� ����� �� �
� �������� ,
��� ��
���� �
� ;��
�����
� ����
��� ������� �
� ����� �
�����
�� �
� ��������� ��
�� ��
�����
�
� �������� 5��
���� �
� ������ ���
 ������� ����
��� �� ����������
� �
�
������� <����	 ��� ��
����	 ��
���� �
� ������� �
� ����
��)� �� �������
�	

2 5 3Dynamic H and Ge st ure Re c o gnit io n

����������	 ��
�� �
�
� ���� ��������������	 ������� ��
 ���	�
��������� ���

��
�	���
�	 ��	������� ��������� ���
���� ������� ���
���� �� ��� ������� ��

������� �

��������� ���� ��������
 ���
���� �� ���
������	��� ������� ���
�

���� �� ��� ��
�� 	������� ����� �������
��� ��� ������� �� ������� ��
��������

�

	�
������ �������� ������ ��
�������� �	������� �� ���� ��
�� �

�
� ������

������� ��� ��
	����� ���	��� ������� ��
��������� 	��� �� ��
��
���� �� ��
���

��� ��
� ������� ���� � ������
� ��
�������� !��
�������
�� �� ��
����"��

����� ���
��
������� �	�������� ���� ����� �
������ ���
���� ��� ��
� ���

����
� ��
�������
�� �� ���� �� ��������� ��� ������� �� ��� ������� ����� ��

��� ��
�� �������

���� �� ��� �����	� 	�
���
�
�� ������� �
�
	��� �����	� 	�
���
�
�� �� ��� �����	��

���� �����	� ����
�
�� �� �����	� ���
�
�� ����	
����

#����� $ ����� �
��
	��� ��� ������� ������ ������� ���� ��� �������

!�� %���
������ ��� ��
�� ������ ������
� ���� ���
����
������ ������� ���

��� ��
��� �

	�
������ ���
���� �	������� ��� ��
� ��� �� ���
����
������

������
� �� ���� ��� ������� ������� �� ��� ��
�� ������ !�� %��� �����
�� ��

��
	������� ����� ��� �������� ����� ��� ������� ��
������
��� �� ��
����"�

��� ���
����
������� �� �		 ���������

�� ������	� ��� ������� ��
�������� ������ ��� ����
����
�	
���	��� ��
� ��

������� ���������
������ ���
���	 ��� �
����	 ������
�� ��� ������� ����������

!�� ���� �����
�����
������ ��� ��� ������� ��
�������� ������
�� ����
���

����� ��Æ
�	�����

��� �����	�
��	��
�� ������

���������
����
���	�� �� ���� ��
������ ���
�������� �������� ��
��������� ��

�� �������� �� ���
�������� ������� ��� �������
������� ��� ��� ���������� ����

2 5 4 T are k El . T o be ly e t al.

��� ��� ����� �	 ���
����
� �� ��� ���
� ����� �	 ��� ����� ������ ��� ������
�����
 	�
 ��� ����� ���
�� ���� �	 ���� ���
� ���� ��� �����
 �� ���
����
��
��
 ����� ��� ������� �	 ����������� ��
������ �� �
������� ���
�� ��� �����
���
� �� �������
�� �� �����
� �	 ��� ����������� �������� �� ���� ���� ��
����
��
������ ������ ���� ��� ����
 ��� ��� �
�������� ���
�� 	
��
����
� ���
���

��� ������	
 	��
�	��	
 �	��	���

�����
�� ��
����� ��� ������� ��
����� �
� ��� ����
���� 	����
� �� ���
����
�

���
������ ������� �����
�� ��
����� �� ��� �� ��� ��
���
 ��
��� �� ��
	�
�
���
����
�� �����
� ���
����
�
���
������ ������ �� ����������� �� ��� �����
�	 ���
����
��� ����� ��� �����
! ������� ����
��� ����� ���
�� ��� �����
�� ��
����
��� �����
�� ��"������ ���
�	�
�� �	 ��� ����
����
� ��
���� �� ��� �����
!
�� 	��� �
 ���� ������ ��� �����
! ���� �����
� �� ���� ��� ���� ����
��� �����
�
��"������ #����
� ������� ��
����� ����� ��� ��$�
��� ������ �
 ��%� �	 ����� ��
���
����
��� �� ����� ���� �
������ �� ��
���������� �� �����
��� ��� �����
!
	����
� ��� ����
 ��$�
��� ��
���� 	�
 ���� �����
�� &� ���� ����� ��� �����
!
��� ����
��� ��� ������� ��
����� ������� ��$�
��� ���
��

��� ������� ���������

���� �����
�� ���� �� ��� ������ ��� �� "���� ������
 �� ������
 �����
���
�� ���
���� ���� �
������ �� ��
���������� �� ��������� �
�������� ������"��
�� ���
���
������ �
������ ��� �
�������� �
����� �� ����
����� ����
 ��$�
���
����������� �
��������� �"������� �� ���� �� ����
�� ���
��
� �
�������
 �������
'() �
 ������
���
������ ������� '*)� &� ���� ����� ��� �����
! ���
��� � ��"�����
�	 ��
�� �����
� 	�
 ���� ���
�� ��� ��� �
�������� ������ ��� ������ ��� ���
��
���� ������� �
��������� �� ��� �����
�

� ���� ���	
�����

��� �����
 ���
����
 �� ��� �����
!� ������� �� �����
��
 ��� ������
���
������� ��� ����� ��� ��� �������! �	 ��� 	����
�� ��� ���
���� ����� ���
���
�� ���� ������� ������
��� �� �������� �� ��� �����
� +�$�
��� �������,
���� ������ ��� �� ���� �� �����
� ���� ������
��� ���� �� ��

�������� ��
������
������� �
 -�������� ��������� �����
� ��� �����
 ���
����
 ����������� ��,
�
����� �� ��� �����
! ��%� ���
������ ���� �� ��� ���� ���������� �� ����	� ���
��
���
���
������ ��
�
���� �	 ��� �����
!� ��� ��� �
������ ��
�
���� ��
������ .������%�� ���	,�

���%��
 ��� /.���0 ��
�
����� &� ���� ��
�
�����
��� �����
 ����������� �� ���� ��������
 �� ��� �����
! ��%� ��� ������ ���
��

���� �� �����
 ���
����
� �����
� .��� �� ������� 	�
 �����
 ���
����
 ��
��� �����
!� ���� �����
����� ����
 ��� ��
��� ����������� ��
�
�����

+�
��
 ��� ���
���
 ������� ������
 ������ �
� ������ �� � �����
����
�������� �� ��� �����
! 	����
� ���� ���
�	�
�� �� �� �������� �� ������ ���
	����
� ��� ���� ������� �	 �����
���� ������
�� ���
� ��� ���
���
 ���
���

2 5 5Dynamic H and Ge st ure Re c o gnit io n

���� ������	
��
���� �	
 �
���� �� ��
 ���

����
	� ���� �� ��
� ��
 ����
���������� �� ���� ����	�����

�
��	
 ����
�
����� ���� ����	����� �� �� 	
���	
� �� ����� ��
 ���������
������

�����������

� !�"��
 ��
 �
���	� �
���	
 ��� ����
��������� ����
�� ��
����
	��
� #	��
�
�
����
	� �
�

� ��
 �
�	��� ������� �� ���

��
	� �� ��

����
	

	
�	
�
�����"
�

$� �
���	
 	

�������� �����
������� ��
 ��"����� �� �
���	
 ��� ���� ���
	
��

����
	�
�� �
 �����
� ��������� ���

� �� ��
� �����
������� ��

��
���� ��
��� �
���	
 ��� ��
��
� ���� ��
 ����
 �� 	
�	
�
���� %�
	
��	
� �� �� �������

�� �
&�
 ��
 �
� �� �
�	��� ��
�
�
����
	 �� "�
���� ��

��
���� �� ��

�
���	
 ��� �
�	��� �� ����
� '��
"
	� ��
 ��������
 ��"����� �� �
���	
 ���
����
����
	� �� ���� �������
 �� ����� ����	���� ������	 �� ��
 ()* ����	����
+,-�

%�
 ������

���
������� �� ���� �	
 ���
 �� ��� ����
� %�
 &	�� ����

��
� ����
� �� ��
 ����� ����
 ��
������
 ��
 �������� �� ��
 ����
	 �� ��

�
���	
 ���. ��
 ����
	 �� ���� ����
 ��
���
� ��
 ����
	
�������
�� ��� ���

���
������ 	��� �� ������

� �
�

� �����
 	����� �����
 � �	�� ��
 ����� ����
 ���� ��/
 � ��� �����
�� ��
 �
���	��

� 0��� ���
���
������ �
�
�
� ����� ��

���
������ �
��

� ��
 ��1
��
�� � ��� ��

�		
��������
��
����� ��
�
�
����
	 	
�	
�
�����"
 �� ��

�
���	�

� %�

����
	 �� ��
 ����
	 �
�

�
� �	�� ����
���
������ ��
�����
	
� �� ��

����
	
�������
��

� 0��� ��
 ���

���
������ �
�
�
� ����� ��

���
������ �
��

� ��
 ��1
��
�� � ��� ��

�		
��������
��
����� �� ��� �
�	��� �� ��

����
	
�������
�

� %�
 ����
	 �
�

�
� �	�� ����
���
������ ��
���
� ��
 ����
	
�������
��

$� ��
 �

��� ����
� ��

���	
 ����� ����
 ��1
�� �	
 ��
� �� �
�	
� ��	
��
 ����
	 �� ��
 �
� �� �
���	
 ��� �
�	��� �
�����	 �� ��
 ����
	
�������
�
%�
 ����
	 �
�

�
� �	�� ���� ����
 ��
�����
	
� �� ��
 &��� ��� ����
	� %�

���
������ �� ���� ����
 	��� �� ������

� $���� ��� ��
 ����
 ��1
�� �� ��
 �
���	��
� 0��� ��
 ���

���
������ �
�
�
 ��
� �� ��
 &	�� ����
� ����� ��

���

�
������ �
��

� ��
 �
� �� �
���	
 ��� �
�	��� �
�����	 �� ��
 ����
	

�������
�

� $� ��

���
������ ��	
�����
�������� �� �����&
��
�����
	 ��
 �
�

�
� ����
�
	 �� ��
 &��� ��� ����
	� ���
	���
� �
��

� ���� ����
	 ���
�����
	
��
 ����� ����
 �� �
���	
 �	�������� ����
�

2� ���� �

1�����
� �� ��
 �
1� �

����� ��
 ��/
 �� ��
 	����� ����
� �
�
�
��� �� ��
 ������	� �
"������ ��� ��1
�� ����	������� �� ��
 ����� ����
� $�
��������� ��
 ����� �� ��
 ����
	
�������
3� �
�����	 �
�	��� �
�
��� ������
�� ��
 �����
 ��/
 ��

2 5 6 T are k El . T o be ly e t al.

� ����������	
��������

��� ������	�	�
 	
 ��
� �����	��� ����
�� �
 ����� ��	
 ����������� ���
�	��� ����� ���	� ������ ��� ��	��������� ��
�� ����� �
� ��� ������	�	�

��������� ����� ��� ��� �������
�� ��� ���	� ������
 ��� ��
���� ��������
�	���� �� ��� ����� 	���� �	����� ����� �������� �	���� ��� !��� 	
 ��� "��� �����
�# ��
� �� "
� ��� �	

�� ��
�	����� $�	��� ��� �� ��"
�� ��� �	%� �# ���
�	

�� ��
�	����
�	��������� #!
��	�
� &!�	
� ��� ����
� ����� ������	�	�

�# ��
�� ��� "
�� �	

�� 	� �������� #��� ��	� �� ���� ��� �	

�� �������� #���
��	� ����� 	� ��
�	����� �� ����!��� ����!�� 	# ��� ������	�	�
 '��!� ���	�"��
��� �� '��!�� ������	�� ��� �	

�� �	�� ��
��������� �
� ��� 	
�!� 	���� 	�
��
�	����� �� ����!�� ���
�	�	�
 	�����

(
 ��� "��� ������	�	�
 ����� �# ��
�� ��� �	�	���	� ������
 ��� 	
�!�
	���� �
� ��� �������) �# #���!�� ���
�!��
� 	� ����!��� !�	
� *!��	���

�	���
�� #�� ��� �!���� �# 	
�!� 	�����

�� +

��

�������

���� ����
�� � + ,� � � � �� �,�

$����� �� �������
�� ��� �	���
�� ������
 ��� 	
�!� 	���� �
� ��� �������)
�#
�!��
 �� � 	� ��� ��
���� �������� �!���� �# 	���� �	����� ��� 	� ��� ��	���
������
 ��� 	
�!�
�!��
 � �
� ��� �!��!�
�!��
 ��
 	� ���
!���� �# 	
�!�
�	����� � 	� ���
!���� �# #���!�� ���
�!��
�� �
� �� 	� ��� ��� ��'�� '��!� �#
�	��� � 	
 ��� 	
�!� 	����� ��� �	

�� ��
�	���� 	
 	� �������� �� ���
�!��

�	�� �	
	�!� *!��	���
 �	���
���

��� +
�

�	

���

����� � + ,� � � � �� �-�

��� .!���	�
 �# ��� ����� ��� ������ 	� ��.!	��� �� ������ ��	���
��� �� ������ �
������ ������ ���
 ��� ��.!	����
�� �� ���	�'� ��� ���	��� ���!��� 	� �����#!� �#
��� �����
	�	�
 �	��� (
 �!� ����� ���
!���� �# �	���� 	
 ��� 	
�!� 	���� ����
���!���	�
� 	� ����	��	���� ������ �
� ���
!���� �# �	���� 	
 ��� �!���� � ����
������ �	%�� 	� ����!����� �� ��� ������ ���� ��!�� ���	���� ��� ���
 �# ��� 	
�!�
	���� �	����� ��	� �	�� �	'� ��� ���� ���!���� �������	�
�� ����!���	�
 �# ��

� �

	
 �.!��	�
 , �������� �� 	�� '��!�� �	�� ���
����� �
� ������	�	�
� ���
����!���	�
 �# ��� ������ �	%� ���
�� �
 ��� ���
���� ��'	��	�
 �# ��� 	����
�	����� ��� ��.!	��� ������ ��
"��
�� ���Æ�	�
�� �
� ��� ������ ���	���	�

	
���'�� /01�

� +
 � ��
�

�2�

$����� � �������
�� ��� ��.!	��� ���	���	�
 	
���'�� �# ��� �������� �������

	� ���
����� �	���	�!�	�
 �!�'� ���� #�� ��� ��.!	��� ��
"��
�� ���Æ�	�
�� �
	� ��� ���
���� ��'	��	�
 �# ��� ���!���	�
� �
� � 	� ��� ��.!	��� ������ �	%��
$��
 �.!��	�
 2 ���'�� #�� �� 	� �	'��3

� +

���

� �
�4�

2 5 7Dynamic H and Ge st ure Re c o gnit io n

�� ������	
 ���
��� ���������	� ���� � �	��� ���������	 �	� �� ��������� �����
���	 � ��������

� � � � ��
�

�
�� �

�� � ���

��
� �
�	 ���!�� ��� "�
�!���

� �
��

�
�
�

� ���� �� # ����
�$�

%�� �
� &'(��	 �� ���������� ���

��� �
�

�
�)�

*�� 	����� �����������	 ���������	� �
� ���� �
���� ��� �
� ���������	 �	����
!�� �	� �
� ��	���	�� ���Æ���	� ��� � �	� +,-�� ��������!��., �	��/�	
 �
�� !����
�� ��	���	�� ���Æ���	� �	 �
� ����� �� 	����� ���!� ����� .����� 	 � �
-$, 0
�
���!� �������	� ��� ���� !���� �� �
� ������ �� �������� ���� 	�	�	����� �������
���	, %�	�� �
� ��	���� ����� �
���. ������ �
�� ��� ���
� �������� �
� �����������	
�� ��� ���	 �� �����/������. 	������. ����������� ��
������� ��
�� �
� ����	�
���������	 �� ����������� 1-2, �	 �
�� ����� �� �� �������	��� �� �������� �
�
���������	 �	���!�� �� 3� �
�� ���� �	������ �
� ������ ��4� ��� �
� ���� ���	����
��!�����	 �	� ��	���	�� ���Æ���	�,
5. %67 ����	�	
 ��
���� �
� �������. �� ������� ��� 	����	� ��� �
� ������

�����	 ��		�� �� ���
 �	��� ��/�� �	 �
� ���� ���
� �� ������!��� ��	�� %67 ����
������� �	���� �	 � ��	��
���� �������	 �	 �
� 	�����" ������� ���, 0
�������
�
� ����������	 ������	 �	. �	��� ��/�� �	� �
� ��� �� ���

�� ��		����� ��
�
�� �	��� �����
�!� �
� ��	���� ��8���	�� �	 � ����� ��	��� ��	
� 	��� �� �
�
����������	 ��		��� �� �
��	 �	 �
��� 3, �� �� ����� �
��� ��� ��8���	� ��/��� ��
�
� �	��� ���
�� �
� �������	 �� ���� ����
 	����	� ����� �	 � !��. 	����� ��	
�
����	� �
� ��		��,
6� ������� �
��� �� 	� ����� ��� �� ��	����� �
� ��		�� ��	������ ��������

���� �
� ���� �
��� ����������	 �� (%67 ��
����
� �� �
� 	����� %67 ��		��,
9���!��� �� %67 "���� �
� �������. �� ������� ��� 	����	� ��� �
� ����������	
��		�� ���
 ��8���	� �	��� ��/��, �	 �������	� �
� ����������. ��	���. ��	����	�
����� �� �
� �������� ������ � �� ������� �� �
� ��� �� �
� ������ ���������	� �	�
���
 %67 ����	�	
 ��
��� �
� ���	� ��	���. ��	����	 �� �
� ������� ��� �����
���" �����/������ ���� ��	���	�� ��	����	 �� �
� ����������. ��	���. ��	����	
�� �
� �	��� ����	�	
 ���
��, 0
�������� ����.�	
 �
� ����������	 ���	
 ������
�� �	��� ���
� ���� ������ �
� ��		�� ��	������ �	 � !��. 	��� �������	 �	 �
�
	�����" ������� ��� �� %67 ��		��, *���
������� �� �
� 	����� �� �����	��
�	 �
� ��	����. �������� ������ % �	�������� �
� ��		�� ��	������ ����� ������ ��
%67 ��		��, 0
� ����	��
��� �� �
��� �. ���	
 ������ �� ���
� ��/��� �	�����
�� �
� �	���� ��/��� �� �� �������� �� ����
 � ��� �� ������� ��� 	����	� �	 �
��

%67 ��		�� ����, 0
� ���" �� �
� ����	� �
��� ����������	 �� �� ����
 %67
��		��, %����.� �	 �
�� �
���� � ��� �� 	��

���
��� 	����	� ����	� �
� ��	�
	�� ��	������� �� ���	��, 0
�	 �
� ����������	 ������	 �
��� 	����	� ���� ��
������� ���	
 �
� �	���� ���
� ��/���,

2 5 8 T are k El . T o be ly e t al.

���� �� ��� ������ 	
 ��� �
������� �������
��
�
����
���� �
���� ��� ��� ��
����

	

������ ��� ����	�� �	������� �	 ��	�� �
����� ��� ����
��� ���������� �
���� �����

	

������ ��� ����	�� ���� �	 ��� �	����
�
	� �
����� ��� ��� 	��
���� ��	�� ���

�
�������� ��� ���� �����
	�
��
�
����
�����
����
� � ���� ���� �	���
	� �	 ���

�
�����

�� �

��

���

���� ����
�� � � �� ���

����	 �
���
��	�
 � ���
 ��
���� �����
�� �� ���� �� ��
����	�� �� �
� �
��
��� ��

�	 �� �� ��
�����
 �� ��������� ��
�	���� �
�� ����������
 ��
��������
�
� �
� �
��� ����� �� ��
����	�� �� �����	� �	�
�����
 �����
�� �����	� �����

�� �
�

��

�

����� � � �� �!�

	
 ��� � �� �
��� � 	�
��
	��� ��� �	���� �"#�

�� ���	��� �
� $���� �� �� ��%�	� �	�� ����������
 �� ����������
� �� �� �� �����	 ��
��������� ��� $���� ����	�����& '�	 �(������ �� ��
 �� ��
����	�� �� �
� ��
����
�� $���� ��	 ��� �����	�� �
 �
� ��$�
 ����������
)���$�	� �� �� ����	 �
�� �
�
��

�	 ����������
 �
 *��� ����	��
� ��
 	����� �
� 	�+��	�� ����������
�
�� 	���
 �
� ��

�	 ��
�� �
� ����������
� �
 �
� �	�� �
� ����
� �
��� ��
�
� ����	��
� ����
� �
 �
� $����� �� ,-* �
� .*� 	�������$��& /�$�
 �
��
,-*�� " �
� .*�� �

� ������� 	
��
�
 �
���������

���
����	0 �� �������
��� �� 	����
�1� �&
����
�
� �����	�� �� 2�
34�
3
,�
 ���� �
� ���� �
������ �
	��
�
� �����	�� ������ /--� �)-45� �
�
,�� �� �
��
 �
 ���	� 6 	�������$��& '�	��� �
�
����	0 �����	� ��� �� ��
3
��	����� ���
� 4�
�
�
 ����������
 ����	��
� �
� �	��
�
� ������ �	� ���������
�	�� ��%�	�
� ��	��
� �
��	 �
� ���� ���
��
� ��
�����

2 5 9Dynamic H and Ge st ure Re c o gnit io n

���� �� ����� �������	 �
�	�� �
� ��� �
������
� ���������
� 	�
��

����� �����	�
� ��� ����
�� ��� �� ��� ������� �	�	��� 	��� ����� ��
������

��� ��� ���� ����
��� ����� ��� ��������� �� ��� ��
���� 	� ���� ��
���� ���

����� ���� �	�	��� �� ��� 	��
�� �� 	�� ����
��� �	

�� � ����� �������� ��

����� �������� 	��
��� ��� ���� ���� ��
�����

���� �� ��� �
���

�
� ����� ����
�� ��

 ���� �������
� ��� ����
���

�
�	�
 ��� ����
�	�	�� ������ ��� ������� 	� ������
�	�
 ��� 	��
�� ����

����� ��� ������� ��� 	��
� 	�
	��� �� � ���
���� �� 	��
�� ���� ����
�� ���

����
���
��� ���� ����
�� �� ����
��� ��� �������� ��� 	��
�� ����� ���� !!

����
�� ��� ����
�� �� "�� ����
��� #� ��	� ����� ��� ������� 	��
� ��� �� ���

�� ��� ������	�
 �	� �	$�����
���
���% !!&'(!)#� !!&"��� '(!)#& !!�

'(!)#&"��� "��& !!� ��� "��&'(!)#� (������� ��� ����
���
�� �� �����

����
���� ��� ������ ��� ������ *+ �	$�����
���
����

�� ���� ,-./ ��
��	���� ��� �����	�
���
�� 	��
�� 	�
	��� �� ��� ���&

���� �� � ���
���� �� *00 	��
�� ���������	�
 ��� ����
� �� ���� ���	�	�� ����

����
�� �� �������� �� 1���� ��� ����
�	�	��
�	�
 ��� ������ -./ ������	&

�	�� ��
��	��� 	� ����	�� �� ���� ��� ������� �������������� ������� ��� 	��
�

	��
�� ��� ����
�� ��� ��
����� ����� ����� ��� ����
���
�� 	��
�� ���
���

�
�	� �� ���	���� ��� ����������� �� ,-./ ��
��	���� �� 	�������� ,-./

��
��	���� 	� 	� ���
	��� �� ����� 	�� �$&�	�� ����
���	���� -�� ��� ������� ���&

�
�� ��� 	� �	�	��� 	��� ����� ��
����� ��� !!� '(!)#� ��� "�� ����
����

2 6 0 T are k El . T o be ly e t al.

����� ��� ������ 	�
�� ���
�� �� �
�� ����
�� 	� ���	��

�� ���
�� ����
�� ������
���

	��

��� ��� �����	���
�
���	�� �� ����
 ������ � ��� !" ����������
#	
� ��� ����	��� #	
���
 ��
	�	"

	��� $	���� % ���#�
�� ������	
	��
	�� ��

 ��&����� �� ��� 	�
��� ��	�� ����
� '(�����
	
	��
����	
��
��)'(

����	
�� #	
� �	*����
 �
���� �� +,)
�� -)�

���� �� ��� ������	
	��
	�� �	�
�������� ��� 	����
 �
	�� ��� ��� ���� �	
�
�	�����
 �����
 �� ��� ��� ��

��� ������	
	��
����
�. ��)'(� ����	�����
�
�� �

� �� �����
	��
��
�
�� #	���� �����
�� /.
�� ����
� '(�����
	
	��
����	
��� ��� ������	�

	��
����
�. ��
�� �����	���
� 	� 0���� % 	� ���#� 	� 0���� ��

��� ������	
	��
	�� �� ��� 	�
�� ��	�� ����
� '(�����
	
	��
����	
��
	� ����

�

�� �&�
� ����� ������� 1	
�)'(
����	
���
�� ������	
	��
	��

��
����
�. �� ��� 	�
�� ������� ��
�� �
���� �� +,)
�� -)� �� ���#��
�����
�	��
�� +,) �����
���
�� ������	
	��
	��
��
����
�.� #�	�� 	����
�	��

�� -) 	����
���
�� ������	
	��
	��
��
����
�.� (� �������
�� /��
 ���	��
��� +,)
�� -) 	�
�� �
����
�

 �	��
�� �	�	��� ������	
	��
	�� #	
�
��� 2
����
�.� 3. ����
�	��
�� �����
� ��
#� ��
���� 	
 	� �������
�

��
�	�	��� ������	
	��
	�� #	
� ��� ��	� ��
��
�

�� ��
#��� �
� ������	"�
����
�
� �% 	�
�����
�� ��� ������� ����������
�� ��
#��� �
�
���. ����	��
������	
	�� ��� �.�
�	� 	���
 ���
���� �	��� ���� �	�	

� �
���
 !�#����� ���

�
�� �

��� �� 4
��5���+�� ���/����
�� �

�
���� ��	�
6� ���/��� 	� ��
 ��	�
�
'	����
�� ��� ��	�
 	�
�. ���
��� �
� /� ����	�����
�
�� �

�
 ��	�
 ��
��
���
� 7�
��	
	���
�� ��
#��� ��

��� �
� 	� ����
���
�� ��	�� �	*����
 	�
���
���� �
�� ���
���� ��
�� ������	
	��
����	
�� �����
��	�
�� ���
��� �
�	
���
���/���
�� ���
���
�/	��	
. ���/����

2 6 1Dynamic H and Ge st ure Re c o gnit io n

���� �� ��� ������	
	�� �������
 �� ��� 	����� ��	�� ��� ��� ���� �	
� �	�����

������ �� ��� ��� ���

��� �������	
��� ��� ���	�
 ���� ������� �����
 ��
 ��� 	��� �����
� ���

���
��

��������
 ��� ���� � !"#� ��
 $!! ���	�
 ���� �%�&�� ����'� ��

�(���� ��
��)������� ��
�� ���
�
���*+���� �� ��� 	��� �����
 �� ��� ���	�
 ��

������������� ������� ���
����� � �

���)��
 �

����� ���
��
����� ����
�����)������ ,��� �-+����� .� ��� � / � ��
 � / ��(�� ���
�����
�0� �
��+�

*� 	������ ���� '�&� ���������� ��� ��)�	������ �))+��)� �� ���1� ��� �!2
��+�

*� 	������ ���� ������ ���)�)���)�
� ���� ��� ������������ ��
+��
�

� ����������

$�
��)+������ �

�+*���

 �� �����

��� ��� ��� �+��� ������)���� ����)��3
�+���
� #� ���
 ������ 456 	�
�+�� ��)�	������
�
��� �
 �����
�
 ��� ���

	�
�+�� ��)�	������ �����)�����
� 7����� ��)� 	�
�+�� �
 ������
 �
 �
�-+��)�
�� ��
�+��
� 456 ������8 �
 �������
 �� ��)�	��0� ��� ��
�+��
� ���� �������
���)���	 ��)���-+� �

�)����
 ���� ���
�)����
�
��� ��� +
�
 �� ��)�	��0� ���
	�
�+��
� ������� �� ����� 456 ������8 ��)��)� ��� ���+� ���	�
 �� ��
 ������

���
� �� �
 ��-+���
 �� ��
+)� ��� ��)�	������ ���� �� ��� ���	� �� ��� ���	�
�� ������ ��
�� ����
� ��� ���� 2456 ��	������ �
 �����
�
� 2456 ��	������
+
�
 ���
��
+*
�� �� ���+� ���	� �� �������)� ��� ����+�� ��� ���� ���� ��
456 ������� ��� ��	������ �
 ��

����
��	 �� ��� ������8
�0��
��)� ���

�0� �� ��� ���
�� ���+�
+*
��
����

 �� ���
���
��

�������� �� ��� ���+�
���	�� ��
�� �� �
 ��

�*�� �� ��)���
� ��� �+�*�� �� ����+�� ��� ��+���
 ��

)�+
���
� 4��)�� �������� ��� �+�*�� �� ��+���
 �� ���)�+
���
� ���� ��� ��+3
��� ���� ��)�)�+
��� 9���)�+
��� �����
��������: �����
 ��� ������)��
�
���
)����������� ��� ��	������ ������
 �� ��)�	��0�
�����) ���
 	�
�+��
 �� ;��3
"��3��� 	���< ��� ������������ ��
+��

��� ���� ��� ��)�	������ ���� �� ���

2 6 2 T are k El . T o be ly e t al.

����� �� ��	
 ����
���� �� ���� ���� � �� ��
��� �	

���������� ����
�����
�� ��������� ���
���������� ���� �� ���� �����
������ �� ���
���� �� ��
���
�����
����� ���� ����� ���� ��� ������ ���
�������� ������� �����
�� �� ���
��
��� ������

����������

�� �� ������	 �	
 �� �
��� �����	����
	 ����
����� �
� ��	
 ������� ���
�	��
��
	� � �	���	���
	�� �
����
�
	 ���
����� ����� �	
 �������� ���
�	���
	� �
!
������ "
����#� $������ "%��&����	
� '�	� �(()�

*� '� +�,�� �	
 �� "���� ����
�	�&�	� ��	
 ���������� !!-.(/� 0���� 11��1/2�
�((/�

1� 3� 4���
�� �� ��	
�� �	
 4� ���
�� �5���� +���	��
	 0
�� �������
	 �6 �	
����������
 �78��� ��
� ��� "���
����� ������� �	 �!!-.(1� ����� 9�*�9�)� �((1

/� 5� 4
�
	�	� �"��6�����	�&�	� ������ "���	��� "����� �	 �	6
�����
	 "���	��� �((:�
)� "� ������� �	
 0� ;
�,�	�� � ����<���� �	�������	��� � �

��	 ����
����� 0��	�����
����� �	��� �(()�

9� �� =����� �	
 �� 5�#�
�� ����
��������# !�������	� "������ >	��� �
� >	�� "�����
��
	 �	 "����� "#	������� � 0�
���
�	��
6 ��� ��6�� ��
���	 !
	6���	��
	 "�����
!
���	�����
	 �	
 5���	
�
�# ? ��
������ (:@� ������� "�����7�� �((:�

:� "� 4�	�� �+������ ;����� ;��%
���� 05� 0��	���� ����� �(()�
A� =� �	�
�	�
� �� 0�,�
,� �	
 �� >����
,� �"���������� �����7����# 	��	����	�� � '
�	
����# B "
	�� �	����(((�

(� �� ���	� �	
 "� �����
	� �"���������� !
	����� �	
 ���������
	��� !��7��
�� >	��
,�����# 0����� �((/�

2 6 3Dynamic H and Ge st ure Re c o gnit io n

On Approximate Learning by Multi-layered
Feedforward Circuits

Bhaskar DasGup t a�1 and Barbara H amm e r2

1 D e par t me nt o f C o mput e r S c i e nc e , Rut ge rs U niv e rsi t y
C amde n, N J 0 81 0 2 , U . S . A .

bhaskar@crab.rutgers.edu
2 D e par t me nt o f M at he mat i c s/ C o mput e r S c i e nc e , U niv e rsi t y o f Osnabrüc k

D - 49 0 6 9 Osnabrüc k, G e rmany
hammer@informatik.uni-osnabrueck.de

Abstract. W e c o nside r t he pr o bl e m o f e f fi c i e nt approximate l e arning by mul t i -
laye r e d f e e df o r w ard c ir c ui t s subj e c t t o t w o o bj e c t iv e f unc t i o ns.
Firs t , w e c o nside r t he o bj e c t iv e t o maximize t he rat i o o f c o rr e c t ly c lassifi e d po int s
c o mpare d t o t he t raining se t si z e (e . g. , se e [3, 5]) . W e sho w t ha t f o r singl e hid-
de n laye r t hr e sho ld c ir c ui t s w i t h n hidde n no de s and v arying input dime nsi o n,
appr o ximat i o n o f t his rat i o w i t hin a r e lat iv e e rr o r c/n3, f o r so me po si t iv e c o n-
st ant c, is NP - hard even if t he numbe r o f e xampl e s is limited w i t h r e spe c t t o n.
Fo r ar c hi t e c t ur e s w i t h t w o hidde n no de s (e . g. , as in [6]) , appr o ximat ing t he o b-
j e c t iv e w i t hin so me fixe d f ac t o r is NP - hard even if any sigmo id- like ac t iv at i o n
f unc t i o n in t he hidde n laye r and ε - se parat i o n o f t he o ut put [1 9] is c o nside re d, o r
i f t he se miline ar ac t iv at i o n f unc t i o n subst i t ut e s t he t hr e sho ld f unc t i o n.
N e xt , w e c o nside r t he o bj e c t iv e t o minimize t he failure ratio [2]. W e sho w t hat i t
is NP - hard t o appr o ximat e t he f ailur e rat i o w i t hin e v e ry constant larger than 1 f o r
a mult ilaye re d t hre sho ld c irc uit pro v ide d t he input biase s are z e ro . Furt he rmo re ,
e v e n weak appr o ximat i o n o f t his o bj e c t iv e is almost NP - hard.

1 Introduction

F e e d f o r w ard c ir c ui t s ar e a w e ll e st ablish e d le arning m e c hanism w hi c h o f f e r a simpl e
and su c c e ssf ul m e t h o d o f le arning an unkn o w n hyp o t h e sis giv e n so m e e xample s. H o w -
e v e r, t h e inh e r e n t c o mple xit y o f t raining t h e c ir c uit s is t ill n o w an o p e n pr o ble m f o r
m o st prac t ic ally r e le v an t sit uat io ns. S t ar t ing w it h t h e w o rk o f J udd [1 5 , 1 6] it t urn e d o u t
t ha t t raining is NP - hard in g e n e ral . H o w e v e r, m o st w o rk in t his ar e a d e als e i t h e r w i t h
o nly v e ry r e st ric t e d ar c hit e c t ur e s, a c t iv a t io n f un c t io ns n o t use d in pra c t ic e , o r a t raining
pr o bl e m w hi c h is t o o st ri c t c o mpar e d t o pra c t i c al pr o bl e ms. I n t his pap e r w e w an t t o
c o nsid e r si t ua t i o ns w hi c h ar e c l o se r t o t h e t raining pr o ble ms as t h e y o c c ur in prac t i c e .

A feedforward circuit c o nsist s o f n o d e s w hic h ar e c o nn e c t e d in a dir e c t e d a c y c lic
graph . T h e o v e rall b e hav io r o f t h e c ir c uit is d e t e rmin e d by t h e architecture A and t h e
c ir c ui t parameters w . Giv e n a pattern o r example se t P c o nsist ing o f p o in t s (xi; yi), w e
w an t t o l e arn t h e r e gulari t y w i t h a f e e d f o r w ard c ir c ui t . Fr e qu e n t ly, t his is p e r f o rm e d by

� Re se arc h suppo rt e d by N S F grant C C R- 9 80 0 0 86 .

H . A rimura, S . J ain and A . S harma (Eds .) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 2 6 4–2 7 8, 2 0 0 0 .
c© S pringe r- V e rlag B e rlin H e ide lbe rg 2 0 0 0

On A ppr o ximat e L e arning by M ul t i - laye r e d F e e df o r w ard C ir c ui t s 2 6 5

first c h o o sing an ar c hit e c t ur e A w hic h c o mpu t e s a f un c t io n βA(w, x) and t h e n c h o o s-
ing t h e param e t e rs w su c h t ha t βA(w, xi) = yi h o lds f o r e v e ry pa t t e rn (xi; yi). T h e
loading problem (o r t h e training problem) is t h e pr o ble m t o find w e igh t s w su c h t ha t
t h e se e qualit ie s h o ld . T h e decision version o f t h e lo ading pr o ble m is t o d e c id e (ra t h e r
t han t o find t h e w e igh t s) w h e t h e r su c h w e igh t s e xist t ha t lo ad M o n t o A.

S o m e pr e v io us r e sult s c o nsid e r sp e c ific sit ua t io ns. Fo r e xample , f o r e v e ry fixe d
ar c hit e c t ur e w it h t hr e sh o ld ac t iv at io n f un c t io n o r ar c hi t e c t ur e s w it h appr o pria t e ly r e -
st ric t e d c o nn e c t io n graph lo ading is p o lyn o mial [8, 1 0 , 1 5 , 2 0]. Fo r so m e st rang e a c t iv a -
t io n f un c t io ns o r a se t t ing w h e r e t h e numb e r o f e xample s c o in c id e s w it h t h e numb e r o f
hidd e n n o d e s lo adabili t y b e c o m e s t riv ial [2 5]. H o w e v e r, Blum and Riv e s t [6] sh o w t ha t
a v arying inpu t dim e nsio n yie lds t h e NP- hardn e ss o f t raining t hr e sh o ld c ir c uit s w it h
o nly t w o hidd e n n o d e s. H amm e r [1 0] g e n e rali z e s t his r e sult t o mult ilay e r e d t hr e sh o ld
c ir c ui t s. Re f e r e n c e s [8, 1 1 , 1 2 , 1 4, 2 3, 2 7] c o nst it u t e g e n e rali z at io ns t o c ir c uit s w it h t h e
sigm o idal a c t iv a t io n f un c t io n o r o t h e r c o n t inu o us a c t iv a t io ns. H e n c e finding an o p t i-
mum w e igh t se t t ing in a c o n c r e t e l e arning t ask may r e quir e a larg e am o un t o f t im e .

Na t urally, t h e c o nst rain t t ha t all t h e e xampl e s must b e c o rr e c t ly c lassifi e d is t o o
st ri c t . I n a pra c t i c al si t ua t i o n, o n e w o uld b e sa t isfi e d if a larg e f ra c t i o n (bu t n o t n e c e s-
sarily all) o f t h e e xample s c an b e sa t isfie d . M o r e o v e r, it may b e p o ssible t ha t t h e r e ar e
n o c h o ic e s f o r t h e w e igh t s w hic h lo ad a giv e n se t o f e xample s. Fr o m t h e se m o t iv a t io ns,
r e se ar c h e rs hav e c o nsid e r e d an appr o xima t e v e rsio n o f t h e le arning pr o ble m w h e r e t h e
numb e r o f c o rr e c t ly c lassifi e d p o in t s is t o b e maximi z e d . Re f e r e n c e s [1 , 2 , 1 3] c o nsid e r
t h e c o mple xit y o f t raining single t hr e sh o ld n o d e s w it h so m e e rr o r b o unds. Bar t le t t and
Be n - Dav id [3] m o st ly d e al w it h t hr e sh o ld ar c hit e c t ur e s, w h e r e as Be n - Dav id e t . al. [5]
d e als w it h o t h e r c o n c e p t c lasse s su c h as m o n o mials, axis- align e d hyp e r- r e c t angle s,
m o n o t o n e m o n o mials and c lo se d balls. W e o b t ain NP- hardn e ss r e sult s f o r t h e t ask o f
appr o xima t e ly minimi z ing t h e r e la t iv e e rr o r o f t h e su c c e ss ra t i o f o r a c o rr e la t e d ar c hi -
t e c t ur e and t raining se t siz e , v ario us m o r e r e alist ic a c t iv a t io n f un c t io ns, and t raining
se t s w i t h o u t mul t ipl e p o in t s. A n o t h e r o bj e c t iv e f un c t i o n is t o appr o xima t e ly minimi z e
t h e f ailur e ra t io . T h e w o rk in [1 , 2] c o nsid e rs inappr o ximabilit y o f minimiz ing t h e f ail-
ur e ra t io f o r a single t hr e sh o ld ga t e . W e sh o w t ha t appr o xima t ing t his f ailur e ra t io f o r
mul t ilay e r e d t hr e sh o ld c ir c ui t s w i t hin e v e ry c o nst an t is NP- hard and e v e n w e ak appr o x-
imat io n o f t his o bje c t iv e f un c t io n is alm o st NP- hard . S e v e ral pr o o f s ar e o mit t e d du e t o
spa c e limit a t io ns. T h e y c an b e f o und in t h e lo ng v e rsio n o f t his pap e r.

2 The Basic Model and Notations

T h e ar c hi t e c t ur e o f a f e e d f o r w ard c ir c ui t C is d e sc rib e d by a dir e c t e d in t e r c o nn e c t io n
graph and t h e a c t iv a t io n f un c t io ns o f C . A n o d e v o f C c o mpu t e s a f un c t io n

γv

(
k∑

i=1

wvi,vuvi + bv

)

o f it s inpu t s uv1 , . . . , uvk
.
∑k

i=1 wvi,vuvi + bv is c all e d t h e activation o f t h e n o d e v .
T h e inpu t s ar e e it h e r e xt e rnal, r e pr e se n t ing t h e inpu t da t a, o r in t e rnal, r e pr e se n t ing t h e
o u t pu t s o f t h e imm e dia t e pr e d e c e sso rs o f v . T h e c o e f fi c i e n t s wvi,v (r e sp . bv) ar e t h e

2 6 6 Bhaskar DasGupt a and Barbara H amme r

weights (r e sp . threshold) o f n o d e v, and γv is t h e activation function o f v . N o c y c le s ar e
allo w e d in t h e in t e r c o nn e c t io n graph o f C and t h e o u t pu t o f a d e signa t e d n o d e pr o v id e s
t h e o u t pu t o f t h e c ir c uit . A n architecture sp e c ifie s t h e in t e r c o nn e c t io n st ru c t ur e and
t h e γv’s, bu t n o t t h e a c t ual num e ric al v alu e s o f t h e w e igh t s o r t hr e sh o lds. T h e depth
o f a f e e d f o r w ard c ir c uit is t h e le ng t h o f t h e lo ng e st pa t h o f t h e in t e r c o nn e c t io n graph .
A layered f e e d f o r w ard c ir c uit is o n e in w hic h n o d e s a t d e p t h d ar e c o nn e c t e d o nly t o
n o d e s a t d e p t h d + 1, and all inpu t s ar e pr o v id e d t o n o d e s a t d e p t h 1 o nly. A lay e r e d
(n0, n1, . . . , nh) c ir c uit is a lay e r e d c ir c uit w it h ni n o d e s a t d e p t h i ≥ 1 w h e r e n0 is
t h e numb e r o f inpu t s. W e assum e nh = 1 . N o d e s a t d e p t h j, f o r 1 ≤ j < h, ar e c all e d
hidden nodes, and all n o d e s a t d e p t h j, f o r a par t ic ular j, c o nst it u t e t h e j t h hidden layer.

A Γ - c ir c uit C is a f e e d f o r w ard c ir c uit in w hic h o nly f un c t io ns in so m e se t Γ ar e
assign e d t o n o d e s. H e n c e e a c h ar c hi t e c t ur e A o f a Γ - c ir c uit d e fin e s a b e hav io r f un c t io n
βA t ha t maps f r o m t h e r r e al w e igh t s and t h e n inpu t s in t o an o u t pu t v alu e . W e d e n o t e
su c h a b e hav io r as t h e f un c t io n βA : R

r+n �→ R . S o m e p o pular c h o ic e s o f t h e a c t iv a -

t io n f un c t io ns ar e t h e p e r c e p t r o n a c t iv a t io n f un c t io n H(x) =
{

1 if x ≥ 0
0 o t h e r w ise

and t h e

st andard sigm o id sgd(x) = 1/(1 + e −x).
T h e loading problem L is d e fin e d as f o ll o w s (e . g . , s e e [6 ,8]) : Giv e n an ar c hit e c t ur e

A and a se t o f e xampl e s P = {(x; y) | x ∈ R
n, y ∈ R}, find w e igh t s w so t ha t

f o r all (x; y) ∈ M : βA(w, x) = y . I n t his pap e r w e w ill d e al w it h t h o se c lassific a-
t i o n t asks w h e r e y ∈ {0, 1} . C le arly, t h e hardn e ss r e sult s o b t ain e d w it h t his r e st ric t io n
w ill b e v alid in t h e unr e st ric t e d c ase also . A n e xample (x; y) is a positive example if
y = 1, o t h e r w ise it is a negative example . A n e xample is misclassified by t h e c ir c uit if
βA(w, x) �= y, o t h e r w ise it is classified correctly .

A n optimization pr o ble m C is c hara c t e riz e d by a n o n - n e ga t iv e o bje c t iv e f un c t io n
mC(x, y), w h e r e x is an inpu t inst an c e o f t h e pr o ble m, y is a so lu t io n f o r x, and mC(x, y)
is t h e c o st o f t h e so lu t io n y; t h e g o al o f t h e pr o ble m is t o e it h e r maximiz e o r min -
imiz e mC(x, y) f o r any par t ic ular x, d e p e nding o n t h e pr o ble m . D e n o t e by o p t C(x)
(o r sh o r t ly o p t (x) if C is c le ar f r o m t h e c o n t e xt) t h e o p t imum v alu e o f mC(x, y). Fo r
maximiz a t io n, (o p t C(x)−mC(x, y))/ o p t C(x) is t h e relative error o f a so lu t io n y . T h e
o bj e c t iv e f un c t i o ns t ha t ar e o f r e l e v an c e t o t his pap e r ar e as f o ll o w s:

Success ratio function: mL(x, y) =| {x | βA(w, x) = y} | / |P | is t h e f rac t io n o f
t h e c o rr e c t ly c lassifie d e xample s c o mpar e d t o t h e t raining se t siz e (e . g . , se e [3]) .

Failure ratio function: mC(x, y) =| {x | βA(w, x) �= y} |. I f o p t C(x) > 0,
mf (x, y) = mC(x, y)/ o p t C(x) is t h e rat io o f t h e numb e r o f misc lassifie d e x-
ample s t o t h e minimum p o ssible numb e r o f misc lassific a t io ns w h e n a t le ast o n e
misc lassific at io n is unav o idable (e . g . , se e [2]) .

3 Approximating the Success Ratio Function m�

W e w an t t o sh o w t hat in se v e ral sit uat io ns it is dif fic ult t o appr o xima t e mL f o r a lo ading
pr o ble m L . T h e se r e sult s w o uld e xt e nd t h e r e sult s o f [3] t o m o r e c o mple x sit ua t io ns.
Fo r t his purp o se , t h e L - r e du c t io n f r o m t h e so - c alle d M A X- k - c u t pr o ble m t o a lo ading
pr o ble m w hic h is c o nst ru c t e d in [3] is g e n e rali z e d su c h t ha t i t c an b e appli e d t o se v e ral

On A ppr o ximat e L e arning by M ul t i - laye r e d F e e df o r w ard C ir c ui t s 2 6 7

f ur t h e r sit ua t io ns as w e ll. S in c e appr o xima t ing t h e M A X- k - c u t pr o ble m is NP- hard, t h e
NP- hardn e ss o f appr o ximabilit y o f t h e lat t e r pr o ble ms f o llo w s.

Definition 1. Given an undirected graph G = (V, E) and k ≥ 2 in N, the MAX-k-cut
problem is to find a function ψ : V �→ {1, 2, . . . , k}, such that |{(u, v) ∈ E |ψ(u) �=
ψ(v)}| / |E| is maximized. The set of nodes in V which are mapped to i in this setting
is called the ith c u t . The edges (vi, vj) in the graph for which vi and vj are contained
in the same cut are called monochromatic; all other edges are called bichromatic.

Theorem 1. [1 7] It is NP-hard to approximate the MAX-k-cut problem within relative
error smaller than 1/(34(k−1)) for k ≥ 2, and within error smaller than c/k3, c being
some constant, k ≥ 3, even if solutions without monochromatic edges exist.

T h e c o n c e p t o f an L-reduction w as d e fin e d in [2 1]. T h e d e fini t i o n st a t e d b e l o w is a
sligh t ly m o difie d v e rsio n o f [2 1] t ha t w ill b e use f ul f o r o ur purp o se s.

Definition 2. An L-reduction from a maximization problem C1 to a maximization prob-
lem C2 consists of two polynomial time computable functions T1 and T2, two constants
α, β > 0, and a parameter 0 ≤ a ≤ 1 with the following properties:

(a) For each instance I1 of C1, algorithm T1 produces an instance I2 of C2.
(b) The maxima of I1 and I2, o p t (I1) resp. o p t (I2), satisfy o p t (I2) ≤ α o p t (I1).
(c) Given any solution of the instance I2 of C2 with cost c2 such that the r e la t iv e e rr o r

of c2 is at most a, algorithm T2 produces a solution I1 of C1 with cost c1 satisfying
(o p t (I1)− c1) ≤ β (o p t (I2)− c2).

If C1 is hard to approximate within relative error a/(αβ) then C2 is hard to approxi-
mate within relative error a.

C o nsid e r an L - r e du c t io n f r o m t h e M A X- k - c u t pr o ble m t o t h e lo ading pr o ble m L
w it h o bje c t iv e f un c t io n mL w h e r e t h e r e du c t io ns p e r f o rm e d by T1 and T2 hav e t h e f o l-
lo w ing addit io nal pr o p e r t ie s. Giv e n an inst an c e I1 = (V, E) o f t h e M A X- k - c u t pr o b -
le m, assum e t ha t T1 pr o du c e s in p o lyn o mial t im e an inst an c e I2, a sp e c ifi c ar c hi t e c t ur e
and an e xample se t in R

n × {0, 1} o f t h e lo ading pr o ble m L w it h t raining s e t :

– 2|E| c o pi e s o f e a c h o f so m e se t o f sp e c ial p o in t s P0 (e . g . t h e o rigin) ,
– f o r e a c h n o d e vi ∈ V , di c o pie s o f o n e p o in t ei, w h e r e di is t h e d e gr e e o f vi,
– f o r e a c h e dg e (vi, vj) ∈ E, o n e p o in t eij .

Fur t h e rm o r e , assum e t ha t t h e f o llo w ing pr o p e r t ie s ar e sa t isfie d:

(i) Fo r an o p t imum so lu t io n f o r I1 t h e alg o rit hm T1 finds an o p t imum so lu t io n o f t h e
inst an c e I2 o f t h e c o rr e sp o nding lo ading pr o ble m L in w hic h all sp e c ial p o in t s P0

and all p o in t s ei ar e c o rr e c t c lassifie d and e xa c t ly t h o se p o in t s eij ar e misc lassifi e d
w hic h c o rr e sp o nd t o a m o n o c hr o ma t ic e dg e (vi, vj) in an o p t imal so lu t io n o f I1 .

(ii) Fo r any appr o xima t e so lu t io n o f t h e inst an c e I2 o f t h e lo ading pr o ble m L w hi c h
c lassifi e s all sp e c ial p o in t s in P0 c o rr e c t ly, T2 c o mpu t e s an appr o xima t e so lu t io n
o f t h e inst an c e I1 o f t h e M A X- k - c u t pr o ble m su c h t ha t f o r e v e ry m o n o c hr o ma t ic
e dg e (vi, vj) in t his so lu t io n, e it h e r ei, ej , o r eij is misc lassifie d .

2 6 8 Bhaskar DasGupt a and Barbara H amme r

A n analo g o us pr o o f t o [3] yie lds t h e f o llo w ing r e sult :

Theorem 2. Approximation of the above loading problem within relative error smaller
than ((k − 1)ε)/(k(2|P0|+ 3)) is NP-hard since the above reduction is an L-reduction
with α = k/(k − 1), β = 2|P0|+ 3, and a = (k − 1)/(k2 (2|P0|+ 3)).

3.1 Application to Multi-layered Feedforward Circuits

First w e c o nsid e r H - c ir c uit s, H(x) b e ing t h e p e r c e p t r o n a c t iv a t io n f un c t io n . T his t yp e
o f ar c hit e c t ur e is c o mm o n in t h e o r e t ic al st udy o f n e ural n e t w o rks (e . g . , se e [2 2 , 2 4]) as
w e ll as in t h e ir pra c t i c al appli c a t i o ns (e . g . , se e [2 8]) . A ssum e t ha t t h e first lay e r c o n t ains
t h e inpu t n o d e s 1, . . . , n, h + 1 d e n o t e s t h e d e p t h o f t h e H - c ir c ui t , and ni d e n o t e s t h e
numb e r o f n o d e s a t d e p t h i . A n inst an c e o f t h e lo ading pr o ble m w ill b e r e pr e se n t e d by a
t uple (n, n1, n2, . . . , nh, 1) and by an e xample se t w it h ra t io nal numb e rs. T h e f o llo w ing
f a c t is an imm e dia t e c o nse qu e n c e o f T h e o r e m 2 in [3]:

Fo r any h ≥ 1, c o nst an t n1 ≥ 2 and any n2, . . . , nh ∈ N, it is NP- hard t o appr o xi-
ma t e t h e su c c e ss ra t i o f un c t i o n mL w it h inst an c e s (N, P), w h e r e N is t h e ar c hit e c t ur e
o f a lay e r e d {(n, n1, . . . , nh, 1) | n ∈ N} H - c ir c ui t and P is a se t o f e xampl e s f r o m
Q

n × {0, 1}, w it h r e lat iv e e rr o r a t m o st (68n12n1 + 136n3
1 + 136n2

1 + 170n1)−1 .

Correlated Architecture and Training Set Size T h e ab o v e t raining s e t t ing may b e un -
r e alis t i c in pra c t i c al appli c a t i o ns w h e r e o n e w o uld all o w larg e r ar c hi t e c t ur e s i f a larg e
am o un t o f da t a is t o b e t rain e d . On e st ra t e gie w o uld b e t o c h o o se t h e siz e o f t h e ar c hi-
t e c t ur e su c h t ha t v alid g e n e raliz a t io n c an b e e xp e c t e d using w e ll kn o w n b o unds in t h e
PA C se t t ing [2 6]. Na t urally t h e qu e st io n arise s ab o u t w ha t happ e ns t o t h e c o mple xit y
o f t raining if o n e is r e st ric t e d t o sit ua t io ns w h e r e t h e numb e r o f e xample s is limit e d
w i t h r e sp e c t t o t h e numb e r o f hidd e n n o d e s. On e e xt r e m e p o si t i o n w o uld b e t o all o w
t h e numb e r o f t raining e xample s t o b e a t m o st e qual t o t h e numb e r o f hidd e n n o d e s.
A lt h o ugh t his may n o t yie ld v alid g e n e raliz a t io n, t h e d e c isio n v e rsio n o f t h e lo ading
pr o bl e m b e c o m e s t riv ial b e c ause o f [2 5], o r, m o r e pr e c ise ly:

I f t h e numb e r o f hidd e n n o d e s in t h e first hidd e n lay e r is a t le ast e qual t o t h e num -
b e r o f t raining e xample s and t h e t hr e sh o ld a c t iv a t io n f un c t io n, t h e st andard sigm o idal
f un c t io n, o r t h e se milin e ar ac t iv at io n f un c t io n (o r any f un c t io n σ su c h t hat t h e c lass o f
σ - c ir c uit s p o sse sse s t h e univ e rsal appr o xima t io n c apabilit y as d e fin e d in [2 5]) is use d
t h e n t h e e rr o r o f an o p t imum so lu t io n o f t h e lo ading pr o ble m is d e t e rmin e d by t h e
numb e r o f c o n t radic t o ry t raining e xample s (i. e . (x; y1) and (x; y2) w it h y1 �= y2 .)

H o w e v e r, t h e f o llo w ing t h e o r e m yie lds an inappr o ximabilit y r e sult e v e n if w e r e -
st ric t t o sit ua t io ns w h e r e t h e numb e r o f e xample s and hidd e n n o d e s ar e c o rr e la t e d .

Theorem 3. Approximtion of the success ratio function mL with relative error smaller
than c/k3 (c is a constant, k is the number of hidden nodes) is NP-hard for the loading
problem with instances (A, P) where A is a layered (n, k, 1)-H-architecture (n and k
may vary) and P ⊂ Q

n × {0, 1} is an example set with k3.5 ≤ |P | ≤ k4 which can be
loaded without errors.

Proof. T h e pr o o f is v ia L - r e du c t io n f r o m t h e M A X- 3 - c u t pr o ble m w it h a and β d e p e nd -
ing o n k . T h e alg o rit hms T1 and T2, r e sp e c t iv e ly, w ill b e d e fin e d in t w o st e ps: mapping

On A ppr o ximat e L e arning by M ul t i - laye r e d F e e df o r w ard C ir c ui t s 2 6 9

an inst an c e o f t h e M A X- 3 - c u t pr o ble m t o an inst an c e o f t h e M A X- k - c u t pr o ble m w it h
appr o pria t e k and siz e o f t h e pr o ble m and t o an inst an c e o f t h e lo ading pr o ble m, a f t e r-
w ards, o r mapping a so lu t io n f o r t h e lo ading pr o ble m t o a so lu t io n o f t h e M A X- k - c u t
pr o ble m and t h e n t o a so lu t io n o f t h e M A X- 3 - c u t pr o bl e m a f t e r w ards, r e sp e c t iv e ly.

W e first d e fin e T1: giv e n a graph (V, E) d e fin e k = |V | · |E| (w . l . o . g . k ≥ 3) and
(V ′, E′) w it h V ′ = V ∪ {v|V |+1, . . . , v|V |+k−3}, E′ = E ∪ {(vi, vj) | i ∈ {|V | +
1, . . . , |V | + k − 3}, j ∈ {1, . . . , |V | + k − 3}\{i}} w h e r e t h e n e w e dg e s in E′ hav e
t h e mult iplic it y 2|E|. Re du c e (V ′, E′) t o a lo ading pr o ble m f o r t h e ar c hit e c t ur e w it h
n = |V ′|+ 3, k as ab o v e , and e xampl e s

(I) 2|E′| c o pie s o f t h e o rigin (0n; 1),
(II) di c o pie s o f t h e p o in t ei, i. e . (0, . . . , 0, 1, 0, . . . , 0; 0) (t h e 1 is at t h e i t h p o sit io n

f r o m le f t) f o r e a c h n o d e vi ∈ V ′ w h e r e di is t h e d e gr e e o f vi,
(III) a v e c t o r eij f o r e a c h e dg e (vi, vj) ∈ E′: (0, . . . , 0, 1, 0 . . . , 0, 1, 0, . . . , 0; 1) (t h e

numb e rs 1 ar e a t t h e i t h and j t h p o sit io ns f r o m le f t) ,
(IV) 2|E′| c o pi e s o f e a c h o f t h e p o in t s (0|V

′|, pij , 1; 1), (0|V
′|, nij , 1; 0), w h e r e pij and

nij ar e c o nst ru c t e d as f o llo w s: d e fin e t h e p o in t s xij = (4(i − 1) + j, j(i − 1) +
4((i − 2) + . . . + 1)) f o r i ∈ {1, . . . , k}, j ∈ {1, 2, 3} . T h e se 3k p o in t s hav e t h e
pr o p e r t y t ha t if t hr e e o f t h e m lie o n o n e lin e t h e n w e c an find an i su c h t ha t t h e t hr e e
p o in t s c o in c id e w it h xi1, xi2, and xi3 . N o w w e div id e e a c h p o in t in t o a pair pij

and nij o f p o in t s w hic h ar e o b t ain e d by a sligh t shif t o f xij in a dir e c t io n t ha t is
o r t h o g o nal t o t h e lin e [xi1, xi3]. Fo rmally, pij = xij + εN i and nij = xij − εN i,
w h e r e N i is a n o rmal v e c t o r o f t h e lin e [xi1, xi3] w i t h a p o si t iv e s e c o nd c o e f fi c i e n t
and ε is a small p o sit iv e v alu e . ε c an b e c h o se n su c h t ha t t h e f o llo w ing h o lds:

A ssum e o n e lin e se para t e s t hr e e pairs (ni1j1 , pi1j1), (ni2j2 , pi2j2), and
(ni3j3 , pi3j3), t h e n n e c e ssarily i1 = i2 = i3 .

T his pr o p e r t y is f ulfille d f o r ε ≤ 1/(24 ·k(k− 1)+6) du e t o Pr o p o si t i o n 6 o f [2 0],
N b e ing a v e c t o r o f le ng t h 1 . C o nse qu e n t ly, t h e r e pr e se n t a t io n o f t h e p o in t s nij

and pij is p o lyn o mial in n and k .

N o t e t ha t t h e numb e r o f p o in t s is k3.5 ≤ 5|E′| + 12k|E′| ≤ k4 f o r larg e |V |. A n
o p t imum so lu t io n o f t h e inst an c e o f t h e M A X- 3 - c u t pr o ble m giv e s rise t o a so lu t io n
o f t h e inst an c e o f t h e M A X- k - c u t pr o ble m w it h t h e sam e numb e r o f m o n o c hr o ma t ic
e dg e s v ia mapping t h e n o d e s in V ∩ V ′ t o t h e sam e t hr e e c u t s as b e f o r e and d e fining
t h e i t h c u t by {v|V |+i} f o r i ∈ {1, . . . , k − 3} . T his so lu t io n c an b e use d t o d e fin e a
so lu t io n o f t h e inst an c e o f t h e lo ading pr o ble m as f o llo w s: T h e j t h w e igh t o f n o d e i

in t h e hidd e n lay e r is c h o se n as

{
−1 if vj is in t h e i t h c u t
2 o t h e r w ise ,

and t h e bias is c h o se n as

0.5 . T h e w e igh t s (|V ′| + 1, |V ′| + 2, |V ′| + 3) o f t h e i t h n o d e ar e c h o se n as (−i +
1, 1,−0.5+ 2 · i(i− 1)) w hic h c o rr e sp o nds t o t h e lin e t hr o ugh t h e p o in t s xi1, xi2, and
xi3 . T h e o u t pu t unit has t h e bias −k + 0.5 and w e igh t s 1, i. e . it c o mpu t e s an A ND .
W it h t his c h o ic e o f w e igh t s o n e c an c o mpu t e t ha t all e xample s e xc e p t t h e p o in t s eij

c o rr e sp o nding t o m o n o c hr o ma t ic e dg e s ar e mapp e d c o rr e c t ly.
C o nv e rse ly, an o p t imum so lu t io n o f t h e lo ading pr o ble m c lassifie s all p o in t s in (I),

(II), and (IV) and all p o in t s eij c o rr e sp o nding t o e dg e s in E′\E c o rr e c t b e c ause o f
t h e mult iplic it ie s o f t h e r e sp e c t iv e p o in t s. W e c an assum e t hat t h e ac t iv at io ns o f t h e
n o d e s d o n o t e xa c t ly c o in c id e w it h 0 w h e n t h e o u t pu t s o n P ar e c o mpu t e d . C o nsid e r t h e

2 7 0 Bhaskar DasGupt a and Barbara H amme r

r e st ric t io n o f t h e c ir c uit mapping t o t h e plan e {(0, . . . , 0, xn+1, xn+2, 1)|xn+1, xn+2 ∈
R} . T h e p o in t s pij and nij ar e c o n t ain e d in t his plan e . Be c ause o f t h e di f f e r e n t o u t pu t s
e a c h pair (pij , nij) is t o b e se para t e d by a t le ast o n e lin e d e fin e d by t h e hidd e n n o d e s. A
numb e r 3k o f su c h pairs e xist s. T h e r e f o r e , e a c h o f t h e lin e s d e fin e d by t h e hidd e n n o d e s
n e c e ssarily se para t e s t hr e e pairs (pij , nij) w it h j ∈ {1, 2, 3} and n e arly c o in c id e s w i t h
t h e lin e d e fin e d by [xi1, xi3]. D e n o t e t h e o u t pu t w e igh t s o f t h e c ir c uit by w1, . . . , wk

and t h e o u t pu t bias by θ . W e c an assum e t ha t t h e i t h n o d e n e arly c o in c id e s w it h t h e i t h
lin e and t hat t h e p o in t s pij ar e mapp e d by t h e n o d e t o t h e v alu e 0 . Ot h e r w ise w e c hang e
all signs o f t h e w e igh t s and t h e bias in n o d e i, w e c hang e t h e sign o f t h e w e igh t wi, and
in c r e ase θ by wi . Bu t t h e n t h e p o in t s pi2 ar e mapp e d t o 0 by all hidd e n n o d e s, t h e p o in t s
ni2 ar e mapp e d t o 0 by all bu t o n e hidd e n n o d e . T his m e ans t ha t θ > 0, θ + wi < 0
f o r all i and t h e r e f o r e θ + wi1 + . . . + wil

< 0 f o r all i1, . . . , il ∈ {1, . . . , k} w it h
l ≥ 1 . T his m e ans t ha t t h e o u t pu t unit c o mpu t e s t h e f un c t io n NA ND : (x1, . . . , xn) �→
¬x1 ∧ . . . ∧ ¬xn o n binary v alu e s.

D e fin e a so lu t io n o f t h e inst an c e o f t h e M A X- k - c u t pr o ble m by se t t ing t h e i t h c u t ci

as {vj | t h e i t h hidd e n n o d e maps ej t o 1}\(c1 ∪ . . . ∪ ci−1). A ssum e so m e e dg e
(vi, vj) is m o n o c hr o ma t ic . T h e n ei and ej ar e mapp e d t o 1 by t h e sam e hidd e n n o d e .
T h e r e f o r e eij is c lassifie d w r o ng . N o t e t ha t all eij c o rr e sp o nding t o e dg e s in E\E′

ar e c o rr e c t , h e n c e t h e n o d e s v|V |+1, . . . , v|V |+k−3 e a c h f o rm o n e c u t and t h e r e maining
n o d e s ar e c o n t ain e d in t h e r e maining t hr e e c u t s. H e n c e t h e se t hr e e c u t s d e fin e a so lu t io n
o f t h e inst an c e o f t h e M A X- 3 - c u t pr o ble m su c h t ha t alm o st e dg e s c o rr e sp o nding t o
misc lassifie d eij ar e m o n o c hr o ma t ic .

D e n o t e by o p t 1 t h e v alu e o f an o p t imum so lu t io n o f t h e M A X- 3 - c u t pr o ble m and
by o p t 2 t h e o p t imum v alu e o f t h e lo ading pr o ble m . W e hav e sh o w n t hat

o p t 2 =
|E|o p t 1 + (|E′| − |E|) + 4|E′|+ 12|E′|k

5|E′|+ 12|E′|k ≤ 3
2

o p t 1 .

N e xt w e c o nst ru c t T2 . A ssum e t hat a so lu t io n o f t h e lo ading pr o ble m w it h r e la-
t iv e e rr o r smalle r t han c/k3 is giv e n . T h e n t h e p o in t s (I) and (IV) ar e c o rr e c t du e
t o t h e ir mult iplic it ie s. Ot h e r w ise t h e r e lat iv e e rr o r o f t h e pr o ble m w o uld b e a t le ast
|E′|/(5|E′|+ 12|E′|k) ≥ c/k3 f o r appr o pria t e ly small c and larg e k . A s b e f o r e w e c an
assum e t ha t t h e o u t pu t n o d e c o mpu t e s t h e f un c t io n x �→ ¬x1 ∧ . . . ∧ ¬xk . D e fin e o p t 2
t o b e t h e v alu e o f an o p t imum so lu t io n o f t h e lo ading pr o ble m and I2 t h e v alu e o f t h e
giv e n so lu t io n . A ssum e so m e p o in t eij c o rr e sp o nding t o an e dg e in E′\E is misc lassi-
fi e d . T h e n T2 yie lds an arbit rary so lu t io n o f t h e M A X- 3 - c u t pr o ble m . Fo r t h e qualit y I1

o f t his so lu t io n c o mpar e d t o an o p t imum o p t 1 w e c an c o mpu t e

o p t 1 − I1 ≤ 1 ≤ 5|E′|+ 12|E′|k
|E| (o p t 2 − I2) .

T his h o lds b e c ause an o p t imum so lu t i o n o f t h e l o ading pr o bl e m c lassifi e s a t le ast a
numb e r o f |E| p o in t s m o r e c o rr e c t t han in t h e so lu t io n c o nsid e r e d h e r e .

I f all eij c o rr e sp o nding t o e dg e s in E′\E ar e c o rr e c t t h e n w e d e fin e a so lu t i o n o f t h e
M A X- 3 - c u t pr o ble m v ia t h e a c t iv a t io n o f t h e hidd e n n o d e s as ab o v e . Re maining n o d e s
b e c o m e m e mb e rs o f t h e first c u t . A n argum e n t as ab o v e sh o w s t ha t e a c h m o n o c hr o ma t i c

On A ppr o ximat e L e arning by M ul t i - laye r e d F e e df o r w ard C ir c ui t s 2 7 1

e dg e c o m e s f r o m a misc lassific at io n o f e it h e r ei, ej , o r eij . H e n c e

o p t 1 − I1 ≤
5|E′|+ 12|E′|k

|E| (o p t 2 − I2) .

S e t t ing α = 3/2, β = c̃ ·k3 ≥ (5|E′|+12|E′|k)/|E| f o r so m e c o nst an t c̃ and using
T h e o r e m 1 yie lds t h e r e sult as st a t e d ab o v e . �

The (n, 2, 1)-{sgd, Hε}-net T h e ab o v e r e sult d e als w it h r e alist ic c ir c uit st ru c t ur e s.
H o w e v e r, usually a c o n t inu o us and dif f e r e n t iable a c t iv a t io n f un c t io n is use d in pra c t ic e .
A v e ry c o mm o n a c t iv a t io n f un c t io n is t h e st andard sigm o id a c t iv a t io n sgd(x) = 1/(1+
e −x). H e r e w e c o nsid e r t h e lo ading pr o ble m w it h a f e e d f o r w ard ar c hit e c t ur e o f t h e
f o rm (n, 2, 1) w h e r e t h e inpu t dim e nsio n n is all o w e d t o v ary. T h e sigm o idal a c t iv a t i o n
f un c t io n is use d in t h e t w o hidd e n n o d e s. T h e o u t pu t is t h e f un c t io n

Hε(x) =

⎧⎨⎩
0 if x < −ε ,
und e fin e d if − ε ≤ x ≤ ε ,
1 o t h e r w ise .

T h e purp o se o f t his d e fini t i o n is t o e n f o r c e t ha t any c lassifi c a t i o n is p e r f o rm e d w i t h
a minimum se para t i o n a c c ura c y ε . Fur t h e rm o r e , w e r e st ric t t o so lu t io ns w it h o u t pu t
w e igh t s w h o se abso lu t e v alu e s ar e b o und e d by so m e p o sit iv e c o nst an t B . T his se t t ing
is c ap t ur e d by t h e n o t i o n o f so - c all e d ε - se para t i o n (f o r e xampl e , se e [1 9]) . Fo rmally, t h e
c ir c uit c o mpu t e s t h e f un c t io n βA(w, x) = Hε(α sgd(atx+a0)+β sgd(btx+b0)+γ)
w h e r e w = (α, β, γ,a, a0, b, b0) ar e t h e w e igh t s and t hr e sh o lds, r e sp e c t iv e ly, o f t h e
o u t pu t n o d e and t h e t w o hidd e n n o d e s and |α|, |β| < B f o r so m e p o sit iv e c o nst an t B .

Theorem 4. It is NP-hard to approximate the mL with relative error smaller than
1/2244 for the architecture of a {(n, 2, 1) | n ∈ N}-circuit with sigmoidal activation
function for the hidden nodes, output activation function Hε with 0 < ε < 0.5, weight
restriction B ≥ 2 of the output weights, and examples from Q

n × {0, 1}.

T h e pr o o f c o nsist s in an applic a t io n o f T h e o r e m 2 and a c ar e f ul e xamina t i o n o f t h e g e -
o m e t ric f o rm o f t h e c lassific a t io n b o undary d e fin e d by t h o se t yp e s o f n e t w o rks. I t t urns
o u t t ha t so m e argum e n t a t i o n c an b e t ransf e rr e d f r o m t h e st andard p e r c e p t r o n c ase sin c e
so m e g e o m e t ric al sit ua t io ns m e r e ly c o rr e sp o nd t o t h e r e sp e c t iv e c ase s f o r p e r c e p t r o n
n e t w o rks. H o w e v e r, addit io nal g e o m e t ric sit uat io ns may t ake plac e w hi c h ar e e xc lud e d
in o ur se t t ing w it h appr o priat e p o in t s in t h e se t o f sp e c ial p o in t s P0 in n e ar o p t imum so -
lu t io ns. Du e t o t h e sit uat io n o f ε - se para t io n it t urns o u t t ha t t h e r e sult t ransf e rs t o m o r e
g e n e ral a c t iv a t io n f un c t io ns:

Definition 3. Two functions f, g : R → R are ε-approximates of each other if |f(x)−
g(x)| ≤ ε holds for all x ∈ R.

Corollary 1. It is NP-hard to approximate the success ratio function mL with relative
error smaller than 1/2244 for {(n, 2, 1) | n ∈ N}-circuit architectures with activation
function σ in the hidden layer and Hε in the output, ε < 1/3, weight restriction B ≥ 2,
and examples from Q

n × {0, 1}, provided σ(x) is ε/(4B)-approximate to sgd(x).

2 7 2 Bhaskar DasGupt a and Barbara H amme r

The (n, 2, 1)-{lin, H}-net I n t his se c t io n, w e pr o v e t h e NP- hardn e ss o f t h e appr o x-
imabili t y o f t h e su c c e ss ra t i o f un c t i o n w i t h t h e se milin e ar a c t iv a t i o n f un c t i o n c o mm o nly
use d in t h e n e ural n e t li t e ra t ur e [7 ,8]:

lin(x) =

⎧⎨⎩
0 if x ≤ 0
x if 0 < x ≤ 1
1 o t h e r w ise

.

T his f un c t i o n c ap t ur e s t h e lin e ari t y o f t h e sigm o idal a c t iv a t i o n a t 0 as w e ll as t h e asymp -
t o t ic b e hav io r. N o t e t ha t t h e f o llo w ing r e sult d o e s n o t r e quir e ε - se para t i o n .

Theorem 5. It is NP-hard to approximate mL with relative error smaller than 1/2380
for the architecture of {(n, 2, 1) |n ∈ N}-circuit with the semilinear activation function
in the hidden layer and the threshold activation function in the output.

A gain t h e pr o o f c o nsist s in an applic a t io n o f T h e o r e m 2 and an inv e st igat io n o f t h e
g e o m e t ric al f o rm o f t h e c lassific a t io n b o undarie s w hic h e nable s us t o d e fin e appr o pria t e
alg o rit hms T1 and T2 .

Avoiding Multiplicities I n t h e r e du c t io ns o f pr e v io us se c t io ns, e xample s w it h mult i-
pli c i t i e s w e r e c o n t ain e d in t h e t raining s e t s . I n t h e pra c t i c al r e l e v an t c as e o f n e ural n e t -
w o rk t raining, pa t t e rns ar e o f t e n subje c t t o n o ise . H e n c e t h e p o in t s d o n o t c o m e f r o m a
pr o babili t y dist ribu t i o n w i t h singl e t o ns, i. e . p o in t s w i t h n o n z e r o pr o babili t y. A s a c o n -
se qu e n c e t h e qu e st i o n arise s as t o w h e t h e r t raining se t s w h e r e e a c h p o in t is c o n t ain e d
a t m o st o n c e yie ld NP- hardn e ss r e sult s f o r appr o xima t e t raining as w e ll.

T h e r e du c t io n o f t h e M A X- k - c u t pr o ble m t o a lo ading pr o ble m c an b e m o difie d as
f o llo w s: T1 yie lds t h e mutually different p o in t s:

– a se t P0 o f p o in t s pj
i , j = 1, . . . , 3|E| f o r e a c h i,

– f o r e a c h n o d e vi, p o in t s ej
i , j = 1, . . . , 2di, w h e r e di is t h e d e gr e e o f vi,

– f o r e a c h e dg e (vi, vj), t w o p o in t s eij and oij .

A ssum e , T1 and T2 sat isf y t h e f o llo w ing pr o p e r t ie s:

(i’) Fo r an o p t imum so lu t io n o f t h e M A X- k - c u t pr o ble m o n e c an find an o p t imum so -
lu t io n o f t h e inst an c e o f t h e c o rr e sp o nding lo ading pr o ble m L in w hi c h t h e sp e c ial
p o in t s P0 and all ej

i p o in t s ar e c o rr e c t ly c lassifie d and e xa c t ly t h e m o n o c hr o ma t ic
e dg e s (vi, vj) le ad t o misc lassifie d p o in t s eij o r oij .

(ii’) I f f o r e a c h i a t l e ast o n e pj
l is c o rr e c t , T2 c o mpu t e s in p o lyn o mial t im e an ap -

pr o xima t e so lu t i o n w h e r e , f o r e a c h m o n o c hr o ma t i c e dg e (vi, vj), o n e o f t h e p o in t s
eij o r oij o r all p o in t s el

i (l = 1, . . . , 3|E|) o r all p o in t s el
j (l = 1, . . . , 3|E|) ar e

misc lassifie d .

A n analo g o us pr o o f t o [3] sh o w s t h e f o llo w ing:

Theorem 6. Under the assumptions stated above, an L-reduction with constants α =
k/(k − 1), β = 3|P0|+ 6, and a = (k − 1)/(k2(3|P0|+ 6)) arises.

Corollary 2. The reductions for general perceptron circuits and in Theorems 4 and 5
can be modified such that (i’) and (ii’) hold. Hence minimizing the relative error within
some constant is NP-hard even for training sets without multiple points in these situa-
tions.

On A ppr o ximat e L e arning by M ul t i - laye r e d F e e df o r w ard C ir c ui t s 2 7 3

4 Approximating the Failure Ratio Function m�

Giv e n an inst an c e x o f t h e lo ading pr o ble m, d e n o t e by mC(x, y) t h e numb e r o f e xam -
ple s in t h e t raining se t misc lassifie d by t h e c ir c uit r e pr e se n t e d by y . Giv e n c, w e w an t t o
find w e igh t s su c h t ha t o p t C(x) ≤ mC(x, y) ≤ c · o p t C(x). T h e in t e r e st ing c ase is with
errors, i. e . o p t C(x) > 0 . H e n c e w e r e st ri c t t o t h e c ase w i t h e rr o rs and inv e st iga t e if t h e
f ailur e ra t io mf = mC(x, y)/ o p t C(x) c an b e b o und e d f r o m ab o v e by a c o nst an t . W e
t e rm t his pr o ble m as approximating the minimum failure ratio w it hin c w hil e le arning in
t h e pr e se n c e o f e rr o rs [2]. I t t urns o u t t ha t t h e appr o xima t io n is NP- hard w it hin a b o und
w hi c h is independent o f t h e c ir c uit ar c hit e c t ur e . Fo r t his purp o se w e use a r e du c t io n
f r o m t h e se t - c o v e ring pr o ble m .

Definition 4 (Set Covering Problem [9]). Given a set of points S = {s1, . . . , sp} and
a set of subsets C = {C1, . . . , Cm}, find indices I ⊂ {1, . . . , m} such that

⋃
i∈I Ci =

S. In this case the sets Ci, i ∈ I , are called a cover of S. A cover is called exact if the
sets in a cover are mutually disjoint.

Fo r t h e se t - c o v e ring pr o ble m t h e f o llo w ing r e sult h o lds, sh o w ing t ha t it is hard t o ap -
pr o xima t e w it hin e v e ry f ac t o r c > 1:

Theorem 7. [4] For every c > 1 there is a polynomial time reduction that, given an
instance ϕ of SAT, produces an instance of the set-covering problem and a number
K ∈ N with the properties: if ϕ is satisfiable then there exists an exact cover of size K ,
if ϕ is not satisfiable then every cover has size at least c ·K .

U sing T h e o r e m 7 A r o ra e t . al . [2] sh o w t ha t appr o xima t ing t h e minimum f ailur e ra t io
f un c t io n w it hin a f ac t o r o f c (f o r any c o nst an t c > 1) is NP- hard f o r a single t hr e sh o ld
n o d e if all t h e inpu t t hr e sh o lds ar e se t t o z e r o . W e o b t ain t h e f o llo w ing r e sult .

Theorem 8. Assume that we are given a layered H-circuit where the thresholds of the
nodes in the first hidden layer are fixed to 0 and let c > 1 be any given constant. Then
the problem of approximating minimum failure ratio mf while learning in the presence
of errors within a factor of c is NP-hard.

Proof. W i t h o u t l o ss o f g e n e rali t y, assum e t ha t t h e c ir c ui t c o n t ains a t l e ast o n e hidd e n
lay e r. A ssum e t ha t w e ar e giv e n a f o rmula ϕ. T ransf o rm t his f o rmula w it h t h e giv e n
c o nst an t c t o an inst an c e (S = {s1, . . . , sp}, C = {C1, . . . , Cm}) o f t h e se t - c o v e ring
pr o ble m and a c o nst an t K su c h t hat t h e pr o p e r t ie s in T h e o r e m 7 h o ld . T ransf o rm t his
inst an c e o f t h e se t - c o v e ring pr o ble m t o an inst an c e o f t h e lo ading pr o ble m f o r t h e giv e n
ar c hit e c t ur e w it h inpu t dim e nsio n n = |C|+ 2 + n1 + 1 w h e r e n1 d e n o t e s t h e numb e r
o f hidd e n n o d e s in t h e first hidd e n lay e r and t h e f o llo w ing e xample s f r o m Q

n ×{0, 1}:

(I) (ei, 0, 1, 0n1+1; 1), (−ei, 0, 1, 0n1+1; 1), w h e r e ei is t h e i t h unit v e c t o r in R
|C|,

(II) c · K c o pi e s o f e a c h o f t h e p o in t s (esi ,−1, 1, 0n1+1; 1), (−esi , 1, 1, 0n1+1; 1),
w h e r e esi ∈ {0, 1}|C| is t h e v e c t o r w it h j t h c o mp o n e n t as 1 if and o nly if si ∈ Cj ,
i ∈ {1, . . . , p},

(III) c · K c o pi e s o f e a c h o f (0|C|, 1, 0, 0n1+1; 1), (0|C|, 1/(2m), 1, 0n1+1; 1), and
(0|C|,−1/(2m), 1, 0n1+1; 0), w h e r e t h e c o mp o n e n t |C|+ 1 is n o n z e r o in all t hr e e
p o in t s and t h e c o mp o n e n t |C|+ 2 is n o n z e r o in t h e la t t e r t w o p o in t s, m = |C|,

2 7 4 Bhaskar DasGupt a and Barbara H amme r

(IV) c · K c o pi e s o f e a c h o f (0|C|+2, pi, 1; 0), (0|C|+2, p0, 1; 1), (0|C|+2, z̃i, 1; 1),
(0|C|+2, z̄i, 1; 0), w h e r e t h e p o in t s pi, z̃i, z̄i ar e c o nst ru c t e d as f o llo w s: C h o o se
n1 + 1 p o in t s in e a c h se t Hi = {x = (x1, x2, . . . , xn1) ∈ R

n1 | xi = 0, xj >
0∀j �= i} (d e n o t e t h e p o in t s by z1, z2, . . . and t h e e n t ir e se t by Z) su c h t ha t any
giv e n n1 + 1 dif f e r e n t p o in t s in Z lie o n o n e hyp e rplan e if and o nly if t h e y ar e
c o n t ain e d in o n e Hi . Fo r zj ∈ Hi d e fin e z̃j ∈ R

n1 by z̃j = (zj1, . . . , zji−1, zji +
ε, zji+1, . . . , zjn1), z̄j ∈ R

n1 by z̄j = (zj1, . . . , zji−1, zji − ε, zji+1, . . . , zjn1),
f o r so m e small v alu e ε w hic h is c h o se n su c h t ha t t h e f o llo w ing pr o p e r t y h o lds: if
o n e hyp e rplan e in R

n1 se para t e s a t le ast n1 + 1 pairs (z̃i, z̄i), t h e se pairs c o in -
c id e w it h t h e n1 + 1 pairs c o rr e sp o nding t o t h e n1 + 1 p o in t s in so m e Hi, and t h e
se para t ing hyp e rplan e n e arly c o in c id e s w it h t h e hyp e rplan e t hr o ugh Hi .

Fo r an e xa c t c o v e r o f si z e K , le t t h e c o rr e sp o nding se t o f indic e s b e I = {i1, . . . , iK} .
De fin e t h e w e igh t s o f a t hr e sh o ld c ir c uit su c h t hat t h e i t h n o d e in t h e first hidd e n lay e r
has t h e w e igh t s (eI , 1, 1/(4m), ei, 0), w h e r e t h e j t h c o mp o n e n t o f eI ∈ {0, 1}|S| is 1 if
and o nly if j ∈ I and ei is t h e i t h unit v e c t o r in R

n1 . T h e r e maining n o d e s in t h e o t h e r
lay e rs c o mpu t e t h e f un c t io n x �→ x1 ∧ . . . ∧ xl o f t h e ir inpu t s xi . S in c e t h e c o v e r is
e xa c t , t his maps all e xampl e s c o rr e c t ly e xc e p t K e xampl e s in (I) .

C o nv e rse ly, assum e t ha t e v e ry c o v e r has siz e a t l e ast c · K . A ssum e so m e w e igh t
se t t ing misc lassifie s le ss t han c ·K e xampl e s. W e c an assum e t ha t t h e a c t iv a t i o n o f e v -
e ry n o d e is dif f e r e n t f r o m 0 o n t h e t raining se t : f o r t h e e xample s in (IV) t h e w e igh t wn

se r v e s as a t hr e sh o ld, f o r t h e p o in t s in (I), (II), and (III) e xc e p t f o r (0|C|, 1, 0n1+2; 1)
t h e w e igh t w|C|+2 se r v e s as a t hr e sh o ld, h e n c e o n e c an sligh t ly c hang e t h e r e sp e c -
t iv e w e igh t w hic h se r v e s as a t hr e sh o ld w it h o u t c hanging t h e c lassific a t io n o f t h e se
e xampl e s su c h t ha t t h e a c t iv a t i o n b e c o m e s n o n z e r o . A ssuming t ha t t h e a c t iv a t i o n o f
(0|C|, 1, 0n1+2; 1) is z e r o w e c an sligh t ly in c r e ase t h e w e igh t w|C|+1 su c h t hat t h e sign
o f t h e a c t iv a t i o n o f all o t h e r p o in t s w hi c h ar e a f f e c t e d d o e s n o t c hang e . Be c ause o f t h e
mult iplic it y o f t h e e xample s t h e e xample s in (II)-(IV) ar e c o rr e c t ly c lassifi e d . W e c an
assum e t ha t t h e o u t pu t o f t h e c ir c uit has t h e f o rm βA(w, x) = f1(x) ∧ . . . ∧ fn1(x)
w h e r e fi is t h e f un c t io n c o mpu t e d by t h e i t h hidd e n n o d e in t h e first hidd e n lay e r, b e -
c ause o f t h e p o in t s in (IV) . T his is du e t o t h e f a c t t ha t t h e p o in t s z̃i and z̄i e n f o r c e t h e
r e sp e c t iv e w e igh t s o f t h e n o d e s in t h e first hidd e n lay e r t o n e arly c o in c id e w it h w e igh t s
d e sc ribing t h e hyp e rplan e w it h i t h c o e f fic ie n t z e r o . H e n c e t h e p o in t s pi ar e mapp e d
t o t h e e n t ir e se t {0, 1}n1 by t h e hidd e n n o d e s in t h e first hidd e n lay e r and d e t e rmin e
t h e r e maind e r o f t h e c ir c uit f un c t io n . H e n c e all n o d e s in t h e first hidd e n lay e r c lassif y
all p o si t iv e e xampl e s e xc e p t le ss t han c · K p o in t s o f (I) c o rr e c t ly and t h e r e e xist s o n e
n o d e in t h e first hidd e n lay e r w hic h c lassifie s t h e n e ga t iv e e xample in (III) c o rr e c t ly
as w e ll. C o nsid e r t his last n o d e . D e n o t e by w t h e w e igh t s o f t his n o d e . Be c ause o f
(III), w|C|+1 > 0 . D e fin e I = {i ∈ {1, . . . , |C|} | |wi| ≥ w|C|+1/(2m)} .

A ssum e {Ci | i ∈ I} f o rms a c o v e r. Be c ause o f (III) w e find w|C|+1/(2m) +
w|C|+2 > 0 and −w|C|+1/(2m) + w|C|+2 < 0 . H e n c e o n e o f t h e e xample s in (I) is
c lassifie d w r o ng f o r e v e ry i ∈ I . H e n c e a t l e ast c ·K e xampl e s ar e misc lassifi e d .

A ssum e t ha t {Ci | i ∈ I} d o e s n o t f o rm a c o v e r. T h e n o n e c an find f o r so m e i ≤ |S|
and t h e p o in t (esi ,−1, 1, 0n1+1) in (II) an a c t iv a t i o n < m · w|C|+1/(2m)− w|C|+1 +
w|C|+2 = w|C|+2−w|C|+1/2 w hi c h is n e ga t iv e b e c ause −w|C|+1/(2m)+w|C|+2 < 0,
w|C|+1 > 0 (III) . T his yie lds a misc lassifie d e xample w it h mult iplic it y c ·K . �

On A ppr o ximat e L e arning by M ul t i - laye r e d F e e df o r w ard C ir c ui t s 2 7 5

On e c an o b t ain an e v e n st r o ng e r r e sult indic a t ing t ha t n o t o nly appr o xima t io n w it hin an
arbit rary f a c t o r is NP hard bu t e v e n appr o xima t io n w it hin a f a c t o r w hic h is e xp o n e n t ial
in t h e inpu t le ng t h is n o t p o ssible unle ss NP ⊂ D T I M E(np o ly (l o g n)). Fo r t his purp o se , w e
use a r e du c t io n f r o m t h e so c alle d lab e l c o v e r pr o ble m:

Definition 5 (Label Cover). Given a bipartite graph G = (V, W, E) with E ⊂ V ×W ,
labels B, D, and a set Π ⊂ E ×B ×D. A lab e ling consists of functions P : V → 2B

and Q : W → 2D which assign labels to the nodes in the graph. The c o st of a labeling
is the number

∑
v∈V |P (v)|. An edge e = (v, w) is c o v e r e d if both, P (v) and Q(w)

are not empty and for all d ∈ Q(w) some b ∈ P (v) exists with (e, b, d) ∈ Π . A t o t al
c o v e r is a labeling such that each edge is covered.

Fo r t h e se t - c o v e ring pr o ble m t h e f o llo w ing r e sult h o lds, sh o w ing t ha t it is alm o st NP-
hard t o o b t ain w e ak appr o xima t io ns:

Theorem 9. [2 , 1 8] For every ε > 0 there exists a quasipolynomial time reduction from
the satisfiability problem to the label cover problem which maps an instance ϕ of size n
to an instance (G, Π) of size N ≤ 2poly(log n) with the following properties:
If ϕ is satisfiable then (G, Π) has a total cover with cost |V |.
If ϕ is not satisfiable then every total cover has cost at least 2log0.5−ε N |V |.
Furthermore, (G, Π) has in both cases the property that for each edge e = (v, w) and
b ∈ B at most one d ∈ D exists with (e, b, d) ∈ Π .

V ia t his T h e o r e m and id e as o f A r o ra e t . al. [2] t h e f o llo w ing c an b e pr o v e d:

Theorem 10. Assume that we are given a layered H-circuit where the thresholds of
the nodes in the first hidden layer are fixed to 0 and let ε > 0 be any given constant. If
the problem of approximating minimum failure ratio mf while learning in the presence

of errors within a factor of 2log0.5−ε N , N being the size of the respective input, is
polynomial time, then NP ⊂ DTIME(npoly(log n)).

Proof. A ssum e t ha t w e ar e giv e n a f o rmula ϕ. T ransf o rm t his f o rmula w it h t h e giv e n
c o nst an t ε t o an inst an c e (G, Π) o f t h e lab e l c o v e r pr o ble m w i t h t h e pr o p e r t i e s as d e -
sc rib e d in T h e o r e m 9 . W . l. o . g . d o e s t h e n e t w o rk c o n t ain a t le ast o n e hidd e n lay e r.

First , w e d e le t e all (e = (v, w), b, d) in Π su c h t ha t f o r so m e e dg e e′ in c id e n t t o v
n o d′ e xist s w it h (e′, b, d′) ∈ Π . T h o se lab e ls ar e c all e d valid . T h e c o st s f o r a t o t al c o v e r
r e main |V | if ϕ is sa t isfiabl e . Ot h e r w ise , t his c an a t m o st in c r e ase t h e c o st s. Fo r e a c h
e ∈ E and b ∈ B a uniqu e d ∈ D e xist s su c h t hat (e, b, d) ∈ Π . W e d e n o t e t his e le m e n t
by d(e, b). W e c an assum e t ha t a t o t al c o v e r e xist s, sin c e t his c an b e p o lyn o mially t e st e d .

N o w t ransf o rm t his inst an c e t o an inst an c e o f t h e lo ading pr o ble m . T h e inpu t dim e n -
sio n is n = n2 + 2 + n1 + 1 w h e r e n1 d e n o t e s t h e numb e r o f hidd e n n o d e s in t h e first
hidd e n lay e r, n2 = |V ||B|+ |W ||D|, E ⊂ V ×W ar e t h e e dg e s, B and D ar e t h e la -
b e ls. T h e f o llo w ing e xample s f r o m Q

n ×{0, 1} ar e c o nst ru c t e d: (m = max{|B|, |D|},
K = |B| · |E|, t h e first n2 c o mp o n e n t s ar e su c c e ssiv e ly id e n t ifie d w i t h t h e t upl e s in
V ×B and W ×D and d e n o t e d v ia c o rr e sp o nding indic e s.)

(I) K c o pi e s o f e a c h o f (0n2+2, pi, 1; 0) (i ≥ 1) , (0n2+2, p0, 1; 1), (0n2+2, z̃i, 1; 1),
(0n2+2, z̄i, 1; 0), w h e r e t h e p o in t s pi, z̃i, z̄i ar e t h e sam e p o in t s as in t h e pr o o f o f
T h e o r e m 8.

2 7 6 Bhaskar DasGupt a and Barbara H amme r

(II) K c o pie s o f (0|n2|, 1, 0, 0n1+1; 1),
(III) K c o pie s o f (0|n2|, 1/(16m2), 1, 0n1+1; 1), (0|n2|,−1/(16m2), 1, 0n1+1; 0),
(IV) K c o pi e s o f e a c h o f t h e p o in t s (ev,−1, 1, 0n1+1; 1), (ew,−1, 1, 0n1+1; 1), w h e r e

ev is 1 pr e c ise ly a t t h o se pla c e s (v, b) su c h t ha t b is a v alid lab e l f o r v and 0 o t h e r-
w ise , and ew is 1 pr e c ise ly a t t h e pla c e s (w, d) su c h t ha t d ∈ D (v ∈ V , w ∈ W) .

(V) K c o pi e s o f e a c h o f t h e p o in t s (−ev→w,d, 1, 1, 0n1+1; 1), w h e r e −ev→w,d is −1
pr e c ise ly a t t h o se pla c e s (v, b) su c h t ha t b is a v alid lab e l f o r v and d is n o t assign e d
t o (v → w, b) and a t t h e pla c e (w, d) and 0 o t h e r w ise (v → w ∈ E) .

(VI) (−ev,b, 0, 1, 0n1+1; 1), w h e r e −ev,b is −1 pr e c ise ly a t t h o se pla c e s (v, b) su c h
t ha t b is a v alid lab e l f o r v .

A ssum e t ha t a lab e l c o v e r w i t h c o st s |V | e xist s. D e fin e t h e w e igh t s f o r t h e n e ur o ns in
t h e first c o mpu t a t io n lay e r by w(v,b) = 1 ⇐⇒ b is assign e d t o v, w(w,d) = 1 ⇐⇒ d
is assign e d t o w, wn2+1 = 1, wn2+2 = 1/(32m2). I f a hidd e n lay e r is c o n t ain e d, t h e

r e maining c o e f fic ie n t s o f t h e i t h hidd e n n e ur o n in t h e first hidd e n lay e r ar e d e fin e d
by wn2+2+i = 1, t h e r e maining c o e f fic i e n t s ar e 0 . T h e n e ur o ns in o t h e r lay e rs c o mpu t e
t h e lo gic al f un c t i o n A ND . T his maps all p o in t s bu t a t m o s t |V | p o in t s in (VI) t o c o rr e c t
o u t pu t s. N o t e t ha t t h e p o in t s in (V) ar e c o rr e c t sin c e e a c h v is assign e d pr e c ise ly o n e b .

C o nv e rse ly, assum e t hat a so lu t io n o f t h e lo ading pr o ble m is giv e n . W e sh o w t hat it
has a t le ast a numb e r o f misc lassifie d p o in t s w hic h e quals t h e c o st s o f a c o v e r, d e n o t e d
by C . A ssum e f o r t h e sake o f c o n t radic t io n t ha t le ss t han C p o in t s ar e c lassifie d w r o ng .
S in c e a c o v e r has c o st s a t m o st K w e c an assum e t hat all p o in t s w it h mult iplic it ie s ar e
mapp e d c o rr e c t ly. Be c ause o f t h e sam e argum e n t a t i o n as in 8 w e c an assum e t ha t t h e
a c t iv a t io n o f e v e ry n o d e is dif f e r e n t f r o m 0 o n t h e t raining se t . A ddit io nally, w e c an
assum e t ha t t h e o u t pu t o f t h e c ir c uit has t h e f o rm βA(w, x) = f1(x) ∧ . . . ∧ fn1(x)
w h e r e fi is t h e f un c t io n c o mpu t e d by t h e i t h hidd e n n o d e in t h e first hidd e n lay e r,
b e c ause o f t h e p o in t s in (I) . H e n c e all n o d e s in t h e first hidd e n lay e r c lassif y all p o sit iv e
e xampl e s e xc e p t le ss t han C p o in t s o f (V) c o rr e c t ly and t h e r e e xist s o n e n o d e in t h e first
hidd e n lay e r w hic h c lassifie s t h e n e ga t iv e e xample in (III) c o rr e c t ly as w e ll .

D e n o t e by w t h e w e igh t s o f t his n o d e . Be c ause o f (II), w|n2|+1 > 0 . Lab e l t h e
n o d e v w it h t h o se v alid lab e ls b su c h t ha t w(v,b) > wn2+1/(4m2). Lab e l t h e n o d e w
w i t h t h o se lab e ls d su c h t ha t w(w,d) > wn2+1/(2m). I f t his lab e ling f o rms a t o t al c o v e r,
t h e n w e find f o r all b assign e d t o v in (VI) an a c t iv a t i o n small e r t han−wn2+1/(4m2)+
wn2+2 . Du e t o (III), wn2+2 < 1/(16m2) ·wn2+1, h e n c e t h e a c t iv a t i o n is small e r t han 0
and le ads t o a numb e r o f misc lassifie d p o in t s w hic h is a t le ast e qual t o t h e c o st s C .

A ssum e c o nv e rse ly t hat t his lab e ling d o e s n o t f o rm a t o t al c o v e r. T h e n so m e v o r w
is n o t lab e le d, o r f o r so m e lab e l d f o r w and e dg e v → w n o b is assign e d t o v w it h (v →
w, b, d) ∈ Π . Du e t o (IV) w e find

∑
b v alid f o r v

w(v,b)−wn2+1+wn2+2 > 0, h e n c e t o g e t h e r
w it h (III)

∑
b v alid f o r v

w(v,b) > wn2+1 − wn2+1/(16m2), h e n c e a t l e ast o n e w(v,b) is o f
siz e a t l e ast wn2+1/(2m). I n t h e sam e w ay w e find

∑
d w(w,d) −wn2+1 + wn2+2 > 0,

h e n c e a t le ast o n e w(w,d) is o f siz e a t l e ast wn2+1/(2m). C o nse qu e n t ly, e a c h n o d e
is assign e d so m e lab e l. A ssum e t ha t t h e n o d e w is assign e d so m e d su c h t ha t t h e
e dg e v → w is n o t c o v e r e d . H e n c e w(w,d) > wn2+1/(2m). Du e t o (V) w e find
−∑

b v alid f o r v, d(v → w, b) �= d
w(v,b) − w(w,d) + wn2+1 + wn2+2 > 0 and du e t o (IV) w e

find
∑

b v alid f o r v
w(v,b) − wn2+1 + wn2+2 > 0, h e n c e

∑
b v alid f o r v, d(v → w, b) = d

w(v,b) >
wn2+1−wn2+2−

∑
b v alid f o r v, d(v → w, b) �= d

w(v,b) > wn2+1−wn2+2 +w(w,d)−wn2+1−

On A ppr o ximat e L e arning by M ul t i - laye r e d F e e df o r w ard C ir c ui t s 2 7 7

wn2+2 = w(w,d) − 2wn2+2 > wn2+1(1/(2m)− 1/(8m2)) > wn2+1/(4m). H e n c e a t
le ast o n e w e igh t c o rr e sp o nding t o a lab e l w hic h c an b e use d t o c o v e r t his e dg e is o f siz e
a t l e ast wn2+1/(4m2). �

5 Conclusion

W e hav e sh o w n t h e NP- hardn e ss o f finding appr o xima t e so lu t io ns f o r t h e lo ading pr o b -
l e m in se v e ral di f f e r e n t si t ua t i o ns. W e hav e c o nsid e r e d t h e qu e st i o n as t o w h e t h e r ap -
pr o xima t ing t h e r e la t iv e e rr o r o f mL w it hin a c o nst an t f ac t o r is NP- hard . C o mpar e d
t o [3] w e c o nsid e r e d t hr e sh o ld c ir c ui t s w i t h c o rr e la t e d numb e r o f pa t t e rns and hidd e n
n e ur o ns and t h e (n, 2, 1)- c ir c uit w it h t h e sigm o idal (w it h ε - se para t i o n) o r t h e se milin -
e ar ac t iv at io n f un c t io n . Fur t h e rm o r e , w e disc usse d h o w t o av o id t raining using mul t iple
c o pie s o f t h e e xample . W e c o nsid e r e d t h e c ase w h e r e t h e numb e r o f e xample s is c o rr e -
la t e d t o t h e numb e r o f hidd e n n o d e s. I nv e st iga t ing t h e pr o ble m o f minimiz ing t h e f ailur e
ra t io in t h e pr e se n c e o f e rr o rs yie lds NP- hardn e ss w it hin e v e ry c o nst an t f a c t o r c > 1
f o r mul t i - lay e r t hr e sh o ld c ir c ui t s w i t h z e r o inpu t biase s, and e v e n w e ak appr o xima t i o n
o f t his ra t io is hard und e r st andard c o mple xit y - t h e o r e t ic assump t io ns.

6 Acknowledgments

W e w o uld like t o t hank Eduard o S o n t ag f o r bringing t h e au t h o rs t o g e t h e r, Pe t e r Bar t le t t
and Be n - Dav id S hai f o r se nding us t h e ir r e se ar c h w o rk (r e f e r e n c e s [3] and [5]) and
p o in t ing o u t t h e implic a t io ns o f T h e o r e m 2 o f [3], Eliz ab e t h S w e e dyk f o r se nding d e -
t ails ab o u t r e f e r e n c e [2], and N S F f o r pr o v iding finan c ial supp o r t f o r t his r e se ar c h .

References

1 . E . A maldi and V . K ann, T he c o mpl e xi t y and appr o ximabili t y o f finding maximum f e asibl e
subsyst e ms o f line ar r e lat i o ns, T he o r e t i c al C o mput e r S c i e nc e 1 47 (1 - 2) , pp. 1 81 - 2 1 0 , 1 9 9 5 .
2 6 5

2 . S . A ro ra, L . Babai, J . S t e rn, and Z. S w e e dyk, T he hardne ss o f appro ximat e o pt ima in lat t ic e s,
c o de s and syst e ms o f line ar e quat i o ns, J o urnal o f C o mput e r and S yst e m S c i e nc e s, 5 4, pp.
31 7 - 331 , 1 9 9 7 . 2 6 4, 2 6 5 , 2 6 6 , 2 7 3, 2 7 5 , 2 7 7

3. P. Bar t l e t t and S . B e n- Dav id, H ardne ss r e sul t s f o r ne ural ne t w o rk appr o ximat i o n pr o bl e ms,
t o appe ar in T he o re t i c al C o mput e r S c i e nc e (c o nf e re nc e v e rsi o n in Fisc he r P. and S imo n
H . U . (e ds.) , C o mput at io nal L e arning T he o ry, L e c t ure N o t e s in A rt ifi c ial I nt e llige nc e 1 5 7 2 ,
S pringe r, pp. 6 39 - 6 44, 1 9 9 9) . 2 6 4, 2 6 5 , 2 6 6 , 2 6 8, 2 7 2 , 2 7 7

4. M . Be llare , S . G o ldw asse r, C . Lund, and A . Russe ll, E f fi c ie nt mult i- pro v e r int e rac t iv e pro o f s
w i t h appli c at i o ns t o appro ximat i o n pro bl e ms, in Pr o c e e dings o f t he 2 5 t h A C M S ympo sium
o n t he T he o ry o f C o mput ing, pp. 1 1 3- 1 31 , 1 9 9 3. 2 7 3

5 . S . B e n- Dav id, N . Eir o n and P. M . L o ng, On t he di f fi c ul t y o f appr o ximat e ly maximi z ing
agr e e me nt s, 1 3t h A nnual A C M C o nf e r e nc e o n C o mput at i o nal L e arning T he o ry (C OLT) ,
2 0 0 0 . 2 6 4, 2 6 5 , 2 7 7

6 . A . Blum and R . L . Riv e st , T raining a 3- no de ne ural ne t w o rk is NP - c o mpl e t e , N e ural N e t -
w o rks 5 , pp. 1 1 7 - 1 2 7 , 1 9 9 2 . 2 6 4, 2 6 5 , 2 6 6

2 7 8 Bhaskar DasGupt a and Barbara H amme r

7 . J . Br o w n, M . Garbe r, and S . V anabl e , A r t ifi c ial ne ural ne t w o rk o n a S I M D ar c hi t e c t ur e ,
in Pr o c . 2 nd S ympo sium o n t he Fr o nt i e r o f M assiv e ly Parall e l C o mput at i o n, Fair f ax, V A ,
pp. 43- 47 , 1 9 88. 2 7 2

8. B . DasGupt a, H . T . S i e ge lmann, and E . D . S o nt ag, On t he I nt rac t abili t y o f L o ading N e ural
Ne t w o rks, in R o yc ho w dhury V . P. , S iu K . Y . , and Orlit sky A . (e ds.) , T he o re t ic al A dv anc e s in
N e ural C o mput at i o n and L e arning, K luw e r A c ade mi c Publishe rs, pp. 35 7 - 389 , 1 9 9 4. 2 6 5 ,
2 6 6 , 2 7 2

9 . M . R. Gare y and D. S . J o hnso n, C o mput e rs and I nt rac t abilit y: A Guide t o t he T he o ry o f
NP - c o mpl e t e ne ss, Fr e e man, S an Franc isc o , 1 9 7 9 . 2 7 3

1 0 . B . H amm e r, S o m e c o mpl e xi t y r e sul t s f o r pe r c e pt r o n ne t w o rks, in Niklass o n L . , B o d´e n M . ,
and Zi e mke , T . (e ds.) , I C A NN’9 8, S pringe r, pp. 6 39 - 6 44, 1 9 9 8. 2 6 5

1 1 . B . H amme r, T raining a sigmo idal ne t w o rk is di f fi c ul t , in V e rl e yse n M . (e d.) , Eur o pe an S ym-
po sium o n A r t ifi c ial N e ural N e t w o rks, D - Fac t o publi c at i o ns, pp. 2 5 5 - 2 6 0 , 1 9 9 8. 2 6 5

1 2 . K . - U . H ¨o f f ge n, C o mput at i o nal limi t at i o ns o n t raining sigmo id ne ural ne t w o rks, I nf o rmat i o n
Pr o c e ssing L e t t e rs 46 (6) , pp. 2 6 9 - 2 7 4, 1 9 9 3. 2 6 5

1 3. K . - U . H ¨o f f ge n, H . - U . S im o n, and K . S . V an H o rn, R o bust t rainabili t y o f singl e ne ur o ns,
J o urnal o f C o mput e r and S yst e m S c i e nc e s 5 0 (1) , pp. 1 1 4- 1 2 5 , 1 9 9 5 . 2 6 5

1 4. L . K . J o ne s, T he c o mput at i o nal int rac t abili t y o f t raining sigmo idal ne ural ne t w o rks, I EEE
T ransac t i o ns o n I nf o rmat i o n T he o ry 43(1) , pp. 1 6 7 - 7 1 3, 1 9 9 7 . 2 6 5

1 5 . J . S . J udd, On t he c o mpl e xi t y o f l o ading shall o w ne t w o rks, J o urnal o n C o mpl e xi t y 4(3) ,
pp. 1 7 7 - 1 9 2 , 1 9 88. 2 6 4, 2 6 5

1 6 . J . S . J udd, N e ural ne t w o rk de sign and t he c o mpl e xi t y o f l e arning, M I T Pr e ss, C ambridge ,
M A , 1 9 9 0 . 2 6 4

1 7 . V . K ann, S . K hanna, J . Lage rgr e n, and A . Panc o ne si, On t he hardne ss o f appr o ximat ing
max- k- c ut and i t s dual, T e c hni c al R e po r t C J T C S - 1 9 9 7 - 2 , C hi c ago J o urnal o f T he o r e t i c al
C o mput e r S c i e nc e , 1 9 9 7 . 2 6 7

1 8. C . Lund and M . Y annakakis, On t he hardne ss o f appr o ximat e minimi z at i o n pr o bl e ms, J o ur-
nal o f t he A C M , 41 (5) , pp. 9 6 0 - 9 81 , 1 9 9 4. 2 7 5

1 9 . W . M aass, G . S c hni t ge r, and E . D . S o nt ag, A c o mpariso n o f t he c o mput at i o nal po w e r o f
sigmo id v e rsus bo o le an t hre sho ld c irc uit s, in R o yc ho w dhury V . P. , S iu K . Y . , and Orlit sky
A . (e ds.) , T he o r e t i c al A dv anc e s in N e ural C o mput at i o n and L e arning, K luw e r A c ade mi c
Publishe rs, pp. 1 2 7 - 1 5 1 , 1 9 9 4. 2 6 4, 2 7 1

2 0 . M . M e giddo , On t he c o mple xit y o f po lyhe dral se parabilit y, Disc re t e C o mput at io nal G e o me -
t ry 3, pp. 32 5 - 337 , 1 9 88. 2 6 5 , 2 6 9

2 1 . C . H . Papadimt ri o u and M . Y annakakis. Opt imi z at i o n, A ppr o ximat i o n and C o mpl e xi t y
C lasse s, J o urnal o f C o mput e r & S yst e m S c i e nc e s 43, pp. 42 5 - 440 , 1 9 9 1 . 2 6 7

2 2 . I . Parbe rry and G . S c hni t ge r, Parallel computation with threshold functions, J o urnal o f C o m-
put e r and S yst e m S c i e nc e s, 36 , 3 (1 9 88) , pp. 2 7 8- 30 2 . 2 6 8

2 3. J . ˇS imà, Bac k- pr o pagat i o n is no t e f fi c i e nt , N e ural N e t w o rks 9 (6) , pp. 1 0 1 7 - 1 0 2 3, 1 9 9 6 . 2 6 5
2 4. K . - Y . S iu, V . R o yc ho w dhury and T . K ailat h, Discrete Neural Computation: A Theoretical

Foundation, Engl e w o o d C li f f s, N J : Pr e nt i c e H all, 1 9 9 4. 2 6 8
2 5 . E . D . S o nt ag, F e e df o r w ard ne t s f o r int e rpo lat i o n and c lassifi c at i o n, J o urnal o f C o mput e r and

S yst e m S c i e nc e s 45 , pp. 2 0 - 48, 1 9 9 2 . 2 6 5 , 2 6 8
2 6 . M . V idyasagar, A t he o ry o f l e arning and ge ne rali z at i o n, S pringe r, 1 9 9 7 . 2 6 8
2 7 . V . H . V u, On t he inf e asibilit y o f t raining w i t h small squar e d e rr o rs, in J o rdan M . I . , K e arns

M . J . , and S o lla S . A . (e ds.) , A dv anc e s in N e ural I nf o rmat i o n Pr o c e ssing S yst e ms 1 0 , M I T
Pr e ss, pp. 37 1 - 37 7 , 1 9 9 8. 2 6 5

2 8. B . W idr o w , R . G . W int e r and R . A . Baxt e r, Layered neural nets for pattern recognition, I EEE
T ransac t i o ns o n A c o ust i c s, S pe e c h and S ignal Pr o c e ssing, 36 (1 9 88) , pp. 1 1 0 9 - 1 1 1 7 . 2 6 8

��� �����	��
 ��
���� ���������

���� ������	��� �
� ��

��� �� �����	����

� �������� �	
��� �
 ��
�������� �	���	��� ��
��� ����������
������� ��������� �� ��!
����������	�
�����
�

� "�� ���� �	���	� #� �������� ���������� �
 "���
������ ����� "��$
����� "��$� "% ���&'� �!�!%!

��������������������

��������� (� 	������� ������� ������� ����������)��
 � ���������$��
�������
��� �� �* ��������
�����! �� ��	
 ����� � �
� ������� ����	�� �
 �������� ��! �
�� �� ��	����� �� ������	� �� 	
���� +� �
� ���������
��� ��	��� ���� � �� �,�����-)
�	
 �� �
� ��.����� ��.�������
��� �
 ��

)!�!�! �
� ����	��� ������� �
 �
� �������! �
� ��
�����	� �
 �
� �������
�� �������� +� �
� ��.��� ��/��� �� �
� ����� ���� �
 �
� ������� ����� �
�
����� ���� �
 �
� +��� �������� 	
���� �0�����! (� ������ �� ��.����
�
	����� �
� 1������� 2�����* %�.����
� �
�� ����	��)��
 �
� ������*
� ����� �������� �������. �
�� �
� 	������ ����� �� �
� ���� ���! 3��
��������������� �* ��������
��������)� .��� �� �* ��	��
��� �
 �
�
 ����	���� �
 �
� 1������� 2�����* %�.����
� ��� �
�) �
�� ��� ��.���
�� �,��� -�)
��� � �� �
� ���+�� �
 ������! �� ����	�����
�� 4��������
������� ���������� �
� 1������� 2�����* %�.����
� �� ���.
��� +�����
�
�� �
� �������� 5��	
���������/��� ��+�+����� ���������!

� �������	�
��

��
����� 	��
������
� �����	�� ���� ����� �
 ��
��	� ��	���	��
 ��	� �
�����
�
 ���������	� ����
�
�	��
� ������� � � � �� ����� � ��
�	�� 	�� ������	��
������ ��� ����
�� ����� ����
�	 �
 ��!������� "
 ���� 	���� � 	�� ����
�� ��������
� ������	�� ��� ���
 	�� ��!������ ���!���� �
 �
�	�
�� �� �
� 	�� ���� �
 	��
����
�� �� �������� #$ � �
 ��������� ��
����� 	��
������
� ������ �� �������� �	

��

���

�������� � �

����

��

���

���������

���� �� 	�� 	�	�� �
%��
� ���� �
 	�� ����
�� ��
�� 	�� 	�	�� ���� �
 	�� ���	
������	�� �����
 �&%��
� ����� �
 ��� � �
�	�
���� ��� ���� �
 	�� ����
�� �� 	�
��
���'� 	�� �����	 ����� 	�� ���� �
 	�� ��!������ �� 	� ��(���'� �	� �� ��	 �
)
�	� �����	 ��
��*��
	��
��� 	� ���	���	 	�� ��!������ 	� ������ �
�	�
���
���
� ���
��� ����� �+	������� 	�� ��!������ ����� ���� 	�� �����	 �
���
��� �

� �
��)���)�� ����)
��� �
� ���
�� ������� ���������� �
 "���
������ ����� "��$!
�� �� ����� +� 6�3 .���� ""7���89���

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 2 7 9 - 2 9 0 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

���� ��� ��	
��
 �� �� ��� �� �� ��� 	���
��� ��
�� ���� ��	�� 	���
����
��
������
 ���� ��� �
�� 	� ����	��� ��
 �
�
����	� ����	��
�� ��� �
	� ������

�� ��� ���	��� � 	� ����
�� ����� 	�
�
���! ���� �� �
� ��� ��� ���	�
�
�	�	�
�
����	���
 "��
 �	 �� �	����� �� ��
� ������� � � � ����������� �� ���
�
�� �� # ��	
��! ��	�
����	��� ����	��� �	��

�� $
��	��
����

���
�����

	��
������

���
�������

� � � 	��
����

���
�����

�
��
���

��������� 	��
����

��
���

��������

�
�

��� �	�	�
�
����	���
��	� �� ��� ���� ����	��� ������ ��
���� ������� �����	

�� ���
���� �� ��� �
���
 %��� �� ��	�
����	��� ���
��� �
���� �� ��������
�Æ�	�����
 ��
��	�	�� ��� ���	��� � �� ��� �
�� �	��� ��� �� ����� �� ���
��
����
 ��������� �� 	��������
 �	���� ����	��	� ��� ��� ��
���� �
���� ���
��	�
�	�� ������� ������	�� ��
� ���
 ��
� �������& '����� ��� �	�	�
� ����	��	��

����	�� ��
� ��� ������� ��	
� 	� ��� �
�� ��� �	
�

����	�� ��
� � $ ��
 (���
����	����! ���)
��*���� (�	�
� +����	��� ����	��� �	��

�� $
��	��
����

���
�����

�
��

���

��������� 	��
����

��
���

���� ����

�
�

��	� ������ ��� ���	
�	�� ��
��	��
����	���� �
� ���� ���� �� "������ ,-. ���
�	��
� �������	��

/�
���� ���)
��*���� (�	�
� +����	��� �� ����	�� ���	�
�	�� �	�� ���*
�	����	��
� ��������	
� �
�	�	��
 ��� ��������	
� �
�	�	�� 	������ �
�� ����
*
����
� ��
���� �� �	���	���	��� ����
� 0�������	! 0	���	
�! 1�	����! 2
���	
�!
2
��

�� �� ��
 �� �
��	���
�! �� ����	��� ��� �
�� ������! ����� � 	� ���
��������	
� �
�	�� ��
� 	� ����	��� ��
 ��� ��� �����	�� �
�� �� $,��	. ���
���� �
 	
 /� ���� ��
� ��� ����	��	�� �� ���)
��*���� (�	�
� +����	���
	� ����	�	��� �����������
�

�� $
�

	 ��

�
� ��� 3	���� � ��� 3����

�
�

����� �� $
����

��� ����
 (���� �� �� ���� ��
� 	�� ������ 	�
 ���3��#�! �����

 $ �
�
�����

� ������� ����	 � ��

4
�

�� �
��	���
�! ��� ��� �
�� �� 0�������	! �� ���� ��
� ��� ������ �� ���)
��*����
(�	�
� +����	��� 	�
� ����

#

4
���� 3 #� 3 �� �#�

����� � $ #�4
 ��	� 	� ��� ����� �� ��� �	�	�
� ������ ��
� ���
��� ������
��� ��� ���� ���	��� �
�� ,5.
 ��� �	�	�
� ������ �
� ��� �
�� ���� �#� ���
��� � $ �#�4� �����4� � �46

� ��� �����	
� � 	� ��� ��
�
� ��� �����
�� �����	
� ���� ���� ����	
���

2 80 Eiji T akimo t o and M anf re d K . W armut h

������� �	
���
�� �Æ�	���
����	��
 ��� ����	�� ���	

�	�� �	��
�
��	�

��
�� ��������	
� �

	�� 	� ��� ������� ��	��
��
 �� ������ �	
 �����
� ����

���� ������
�� ���
��
� ��
� �� � ���
����

���
����� ��� �	� � ��	�	
��� �������

!��� � � " �� � ��	�
�	

��
 ��
� #�
�	�
 �	

�� ���	 ������
�� �� �� �	 ��$

��	�
� ������
�����
��	 ��
��
�	��
�� %�� � &��	�����'
�� %�����
 ������
��
��
� � � (�� ��
�� ����$)	��	 *�����+�)�$���,��+ ���#�#���
� ��
���
��� ���
�����
 ��
��� ������
�� �� ����	 ��
�� ���� ���� �� �(� ��
� � � �(��� �	� � �-.
�/�� ���� �-��� /�������	���'
�� 0��
$�
�� 1�	��� ������
�� �� �����
�� #�

��

��	
�� *�����+�)�$���,��+ ���#�#���
� ��
���
�� �� � �-��

%�� ��	���� �	�$
���	���	�� � ��	�	
��� ��������'
�� %�����
 ������
�� ��	
#� ���	 �� � ,��
$��
�� ����� ���
��	 ��
�� 0��
$�
�� 1�	��� ������
���
!���+��' �	
�� ������� ���� �� 2������	
�	��
� ��
���
��	 �	
 ��	��� ���������	'

�� 0��
$�
�� 1�	��� ������
�� �� �
�	
����
�
�� %�����
 ������
��� ���
���� ������ �� �� %�� ��	��� ���������	
��� ��� ,��
 ���	
�
 ��
 #� %���
�� �3��

4	 ��� ����� #��	
� �	
�� �����
 ��
�� %�����
 ������
�� ���� ��+�	 ���
�����,� � ��	�	
��� ��������� %�� ���
�� �����,� �������� ��	��
���

����'
��
#��	
� �� ��	 ���+� ���
�� 0��
$�
�� 1�	��� ������
�� ��� �� ���
 �� #�

���
4	
��� ����� �� ���� ��+� � #��	
 ��� �	��	�(�
��
 ���
� ��� � ����� ����� ��
�	�$
���	���	�� � ��	�	
��� ��������� 5� ���� #��	
 ��)	��	 ���
�� %�����

������
���

4
 �� �	
����
�	�
� 	�
�
��
 ��� 2������	
�	��
� ��
���
��	 �� �	�
 +����	��'

���� � ��
� � ��� #�
���	
�� �����
 ��
�� 0��
$�
�� 1�	��� ������
�� �	

�� �����
 ��
�� ��
���� ��	��� ������
��� /����,�����'
�� ������ �� 	��	 � �'
�����
�� ��

�� �� 	��	 ���	 �	� � �("�� ���� ��	
���
� ��
�
�� ���� �� &��	�����'
�����
�� �����
 ��
�� 0��
$�
�� 1�	��� ������
�� �� #� � ��	�
�	
 ������
��	

�� ��	��� �����
�

���� ����	�
�

����� ��� � ����� 	��#�� �� ���	 ���#�����

(� 4�
�� �����
 ��
�� 0��
$�
�� 1�	��� ������
�� ������ ��
�� ���� 	��	 � �
���
�	��
� ��
���
��	 ��
� �	� ���#�� ��
�� � ��	�	
��� ������6

�� 7���
�� 0��
$�
�� 1�	��� ������
�� ������ ��+� ������� �����

��	
��
%�����
 ������
��6

8� %�� ���

�	��
� ��
���
��	 �	
 ���������	 ���#���� ��
�� �����
 ��
��
0��
$�
�� 1�	��� ������
�� 9�����
�:
�� �����
 ��
�� ��
���� ��	���
������
��6

3� 4
 �� ����
� ��	�������
�� 0��
$�
�� 1�	��� ������
��
�
��
$���
$�
��
1�	��� ������
�� �����
 �� ���� ��	�
�	
 ������
��	 �	�� !��
���

�;��

�� �����
 ��
�� ������
��6 !�� ����� �����

 #� �����	 ��
��

��
�����
 ��
�� ������
�� �� ����	
����� �� ���
 ��
�� ��	��� ������
���

� ���� ������	
� ��� 	�
��� ���������
 ��� ��������� ��
���� �	������� ���	���� ���

���������
� �� ��� ������� �	������� �� ���� ��� ����	��� ��	�� �� ��� ���������
�

�� ���
���

2 81T he Last - S t e p M inimax A lgo rit hm

������ ���	
� ���
 ��� ��� ��

�	���

����� �� � ���	�
��
 �� ���� �� ������	 ��	���
����� ���� ��� ��� ����� ��
��� ������� ����������� ���	�� ��������
 ��� ��� �� � �!� �"#$ ��� ��%������
�� ��	��� ���� �� ���� ��������
 �� ��&����� ���� ���� �� ��� ��������	 ��� �����$

�$ ��� ������� �������� ���� �� ��
�����
 ���
�
����
 ���� �������� ��$ '� ���(
������� �� ���� ��� ���� ��
� �� ��� ����� ����� ��)���* � � � ��$ +� ���
����� ����� �� ��� ������	 �� ��,���� ��� ����������� �� ��� ������� ��
�
-������. �� ��� ����� ���� ���
 ���� ��� �� ��� ���� ������
��	 ����� �����$

!$ ��� ���������� ��������� �� ���� ��� ���� ��
�
������$ ��� ��������
 ��
������� ��,����� �� ������ �� �������� ��,����� ��� � � � ��� �� ���� ���
���
�&(���� ��������� �� ��� ��� ��,�����
����	� �� � ������� ��
��� � � �$
/�� ������
 ���������� ���� �� �0��������� �����
� ���� ��������� �������
����)��� *

��

��� �� � �$

'� ���������� ���� ��� ������	 �� ���� ������ �� �� �
����� ���� ���� � 	���� ����
������� �� ��� ������� ����� ���� ! 	���� ���� ������� �� ��� ��������
$ ���������
��� ��	���
����� �
������ �� ��� ��� ������	 ��� ������
 ���������
�� ����
����� �� ��� ������	$ '� ����������� 1������� ��# ������ ����� ���� ��������� ��
� ���� ��� ������0 ��	��� ��

	

!
��

�

!

2 ��

�
�

�
��)�*� �� 2
)�*�)!*

����� � � �� �� �� ��������� 	 ���

�)�* 3)��)��
� �� �)���*�������**���

������� ��� /����� ����������� �����0 �� �$ ����
���� �� ,���� ��&����� ����
���
���� � ��� 2�)�*$

� �	���	� ��	���� ����
����	

4� %��� 	��� � 	������ ��������� �� ��� ��(���� ������
 ���������� ���
���
���� � ���������� ����� �� ������
������$ ��� � � �� ������ ��� �������� �����
��� � � �

	 ������ ��� ��������� �����$ 5��� ��������� � � � ����������
� ���
�
����
 ������
����� ���� � $ 6����%����
 ��� �)���* ������ ��� ���
�
����

���� �������� ���� � ����������$ 7� ��(���� ��	������ ������ ��� ������� �� �
�������� 8� 9 � � 	 � ���� �� ���� �� ������ � ���������
���� �� ��� ����
�������� ��,�����$ ��� �������� �������� �� ������$ '� ���� ����� � 3 �� !� � � � ���
������� ������� � ��������� �� 3 8�)����*� ����� ���� 3)��� � � � �����* �� ���
�������� ��,����� �
������ �� ���$ ���� ��� ������� �������� �� �������� �� � �
��� ��&��� � ���� ��%��� �� ��� ��	����� ��	(���������� �� �� ��������

 ���
�$�$�

�)�����* 3 � �� �)�����*�

2 82 Eiji T akimo t o and M anf re d K . W armut h

��� ����� ���� �	 ��� ���
��
 �
 �� �
��� � ��
��

��� ��������� ��� ���� �� ���
����
�
�����
 �� ��������� �������� ��������� �������

���� � �
���	
���

��
���

��������

�	 ��
���
� ���

����� �	 ���

����������� �	 ��� ���� ����� ��������� �� ���
!����

��������� ������ ���� ��� �

��

��� ��������� ���� ��� ����
�
�����
 ����
��� �� ����

���� �� ��� ��"���� ��#������� ��������
 �	 ��� ����
 �� ��������
��$����� �� � %� �����
� ���
�
	�
����� �	 ��� ���
��
 	�
 �
�
������
 ��������
��$����� �� � � � �� ��� ������� �
 ��� �������� �	

 � ��&��� ��

��'���� � �

��
���

���������

��
���

��������� ��

��� ���� �	 ��� ���
��
 �� �� ��#� ���
��
�� �� ����� ��
�������� �� ����
�
�
 ��
�
� �����
��� ���� ��� ��
�������
��
�� ��� �� �� �� ���
�� ��� �

���������
���� �����
���� �� ��� ��� �������� ��$����� �� ����
����� �� ����
 ��
��� ���

�������

������ ��� �� ����� �� � ���� �	 ���
����
�� ��� ���
��
 ��� ���
�� �
��
�� ���
� ���
��
�� �� ���
���� 	�������� ��� ���
��
 �
��� �� ������(�
���
��
��� ����� ��� �� �
��
� �
��� �� ��"���(� ��� �� ���� ������ �� ��� � &����

��
�� �� ���� ��
���
��� ��� �� �
��
� �� ������ ��������� 	
�� � �������
�
��� �)���
���� ��� �� �
��
� ����� ��#� ���
��
�� ��������� �� !��� ���
�
����� *� �� ��� �� � � �� ��� ��� �	 ��������� 	
�� ����� ��������� �
� �������
��� ������ �	 �� �� ��� �	 ��� ����
�� ������ 	�
 �����(���
��
��� �� ��
 ���
����
������

� ��������� 	
�
��
 �����
���

�	 ��� ��
�(�� � �	 ��� ���� �� &"�� ��� #���� �� �� ����� ���� �� ��� ��� ���
������" ����
���� �� ������ ��� �
����� ���
��
 �� ��� ���� ����
������ ������
��� ���� �	 ��� ���� �� ��� ����
�������
��
�� ���� ��� ���
��
 ��� ����� �� ��
���� ������ ��� ���� �	 ��� ���� ��� �� ������ 	�
� ��� ��� ������" ����
����
�� ���
����������� ��	�������� +��� ��� �����
 �	 �
���� � ����� ��� �� #���� ��
��� ���
��
� ,�
 ����
������ �� ������� ��� 	�������� ���
�� ���
������ +�����
���� ��� ��

��� �
��� � �� ��� ���� ��� ��� ����
 ��
��� ������ � � �� ���

����� �� ��� -�����" +���
���� ����� ����
 ���� �����
����� -�
�

�������
��� ��������
 -�����" +���
����

������ ����

�� � �
���	
����

��

�����

�
��

���

���� �����

��
���

���� ������

�

� �
���	
����

��

�����

�
���������

��
���

���� ������

�
� �.�

��� ���� �$������ ����� ����� ��� ����� ���� �
 �� �
��� � � / �	 ��� ���
��
 ��
�������� 	�
 ��� ��	 ��� ��
 �
�
�������

2 83T he Last - S t e p M inimax A lgo rit hm

��� �������	
 ��
���� ��������� ��� 	�
�
	
���� ������	�

��� � ������ �	 ��
������ �
� ������������� �� �� � ����� �� ��
������������ ��
���
 �� �� �� ����������� ������ �� ��������� � � ��
��
������ ��������

������ � ����� �����
���������

�
��� ����� ���������� ��� ������ ��
������ �
��

��� ���
����
 �� �� �
�
��������� � �� �����
 �
� ������� ���������� �
� �������� ���� �� � �������
������� ������ �� �
��

�
���

�������� �
��
�	 ��
 �� �� �����
 �
� ��������

	����
�� �
�� �
����������� �
� ������ ��� !� "��� ������ ���� ����� ����������
�� �
� ������� ��� ����
��
������	 ��� #$	 %� &�� ����
����� �
� '��
���� ������
������� (� �� ����)���� �
�� � �� � �������� ������ �������� ��
 ���� �*����
�
� ���� �� �	 ���� ���� �

�
���

���������� !� ��� ���� � � ��
 ���� � �
�
����������� ���������� +���� � �� �������� ������	 �
� ��� ���� � �
�� ��
�������, &�� � ,� ���� +�������� �� �� ���� ���������� �� ��� �
� �����������
��������� � ������
 �� ��� ������� ��������� �� -�"�� �
� �����
 �������� 	
���� �
� ��� �� ����������� ���������� ��

	 ��� � ��������
 �.�

�
� �������� 	 �� �����
 �
� ���� �� � ��
 �������� ������ �� ����� (� �� ���� ��
�
��) �
�� ���� � ��	 ���� �
�� �
� ��� ���������� � ��
 � ��� ������
 ��

� � ���� � ������� �/�

� � ���� � ��	 ���
 �0�

��� ��������� �	 �
� ��'����� ��'���)���
��
 �� � �� ���� � ��� 1 ��������
+���� �
� ���� ���� �� ��
����
��� �� � ��
 �
��
��� ��� �2��� �
� ��'���	 ��

�"�� �
� ���� �������� ������ ��

������ ,� ����� ���
 �3�

(� �� ���� �� ��� �
��	 ��� �� �������� ��*����� �� �� �� �����
	 �
� ���� �2�����
��������� ���� �� '���� �� ���� � ������
 ��
��	 ���� � ��������
��	 �
��� �����

�� �
���
��
 ���
��

��� �� � 4������� �
� ����� ���� �� ���� ��

��

���

���� ������ � �
	 �������
�
 �5�

���� �$�	 �3� ��
 �5�	 �� ����
������ ������� �
�� �
� &�������� 4������ ��'��
���
� ��� �
� ������ �� ���
���� ���

�� � ��'���
����

���
�����

�
����� ���� 1
	 �������
�

�

 �6�

2 84 Eiji T akimo t o and M anf re d K . W armut h

��� ��� ��� 	
����
��
� ��������

� �
�
�
��

�� ���� ��		��
 �� ��	�
��
���� ��� �����
����	 ����������	 ����	��
� ��� ���
��
���
�
��
� �� �� � ����� ���
��� ���	
 � � �� ���
� � �

������ ���

������� ���� �� �� �� �
 �������� �� � �������� �� ��� ����� �� � � �� �� � ��
��

�� � ��!���
����

���
�
��� ���" �� ��� "�	� � ��� ���" �� ��� "�	�

�
� �#$

����� �� � �������	�� �� �
 ��� ���� ��
�� ���� ��� ������� ��������� �� ��
�

���
�� �� �
��� � ������ �� ��
�� ��
���
� ��� ���������
��
� ��

�����
� �� � �� �
�� � �������

���
� ��� ��� � � �����

�

�
��� ��� " �� ��� "�	�

�
�
�� �� � $�

��� %�
� ���� �� ��� ������� �� �#$ �
 ��������
�		� ��
���
��! �� �� ����	��	�
���
�
��� ���� �
 ��������
�		� ��
���
��!� �� ��� ������� ��������� �� ��
�
�� ���
�	����� �� ��� �&������

��� ��� " �� ��� "�	� � ��� ��� " �� ��� "�	� �

��	���! ���
� �� ����

�� �
�

� ��
�� ��� "�	� � � ��� "�	� � �##

��� �

��%�� ���� �� �
��� � ������ ���
� � �

������

� ��� "�	� � � ��� "�	�" �� �� 	�

� � ��� "�	� " ���� "�	� �� �� 	��

'	�!!��! ���
 ���� �## � �� ���� �� � ���� " �	� � ���
�
 �
 ��������
�		�
��
���
��! ��� � �
���

�� �
��� �
����� "�	� � �� "�	� � �� �#(

����	��	� ��
��
��� ����

� ��� "�	� � � ��� "�	� � ���� "�	� �� �� 	��

���
� ���	��

�� �
��� �
����� "�	� � �� "�	� � ��

)��
� �� ������ ���� �� � ������ *��� ���� ���
 ��!����� �	
�
���
 ����

�� "�	� � �� � �� "�	��

+��������� ��� �����
���� �� �� ��� ��
�,
��� -������ .	!������ ���� ��� ��,
��
������ ���������
�����!�
 �� � �������	�� ���
� �
 ��� �����
���� �� ���
/������ .	!�������

2 85T he Last - S t e p M inimax A lgo rit hm

��� ������	�
� ��
 �
��
�

���

Æ� � ���������

��

���

���������� �

����

���

���� ���������

�	
��
��

���

Æ� �

��

���

���������

��

���

��������� � � ������� ��

��
�	
� Æ� ��� ��� 	
�	�	���� ��� 	� � ��� �� �
��	
 �
 �����
��
� �� ��� ������
������� �� �� �� � �
� �!�" ��� ����	��	�
 �� �� ��� ����#���� $	
	%�& '����	��%
��	��

� ����� ���	�(��

���������

��

���

���� ������ � ��������� � �	 �
� �����

��� �
� ��� $�������" �����	
� �!� �	�� � ��������
� �� �" �� ����

����

���

���� �������� � ���� ��	 ������������ ��� � ���� ��	

�
�

�� �

�

�
�

)�
�� �� ����

Æ� � ��������� � �	 �
� ������ ��� ��	

�
�

�� �

�

�
� ��*�

+
 ��� ��
��,��
� ����	�
� �� �	�� �	�� �
 �����
��
� �� ��� ������
�
��
�	
�
��� �	���#��
�#�	�� �� ��� �
��� ���%����

� ������� ����	
���� ���

 ���������

-�� � ���
����	" �
 �&������	�
 ����%���� � � ���� �������
�� ��� ���
�
	�	��
�	���	
��	�
 ���� � � �.� �� �	��

�
�.��� � � � � �
�
����� � �� +
 ��	�
���� �� ���� �� � �" � � �� � �.� ��" ���� � �
�� � ��� �
� 	 ��� �
� �
�� ����� �
������ -��% ���� 	� ������� ���� 	
 ���� ��	�� � ��� ����#����
$	
	%�& '����	��% ����	��� �	��

�� � � �

�
�
� � ��������	����
� � ����������	�

��

� ���
������

�
� ��/�

�����
� � ���������� +
 ����� �����" ��� ����	��	�
 ��� ��� �&������	�
 ����%#
���� 	�

�� �
�� � ��
����� � � ����
��

�
��� ����
 � �� � ��
����� � � ����
��
�

����� � � �������� 0�	� 	� �	1���
� ���% ��� 2�	�����3�#0��(%�� ���
�
	�	��
���	%���� ���� -������ '����	��% �	�� � � �

�
� 45" 6 ���� ����	��� �	�� �� �

2 86 Eiji T akimo t o and M anf re d K . W armut h

�� � ������� ��	
��
� ��
	 �	��	� �� ��	
������� ���������
�

��
�� �� �	
����� ���� � �� � ����� ���� ������
������ ��	 �	��	� �� ��	 ��
��
�	� �����!
"�������� �

������� �	��	��

������� �� ��� #� �� ��� ��������	
���
�� ��������
 ����
���� 	����������
��������� �� ����� ���� ��� ��� �������� ��� ���� �� � �$� ���!

��#���� � �
�

�
���� � �� �

�

�
�

"����� %	���� ���� ��	 �	��	� �
 ��#���� � &
�

�

���
Æ� ��� Æ� �
 ���	�������	� ��

��'�� ��	��

Æ� � 	���� � �
 ����� ��� ��

�
�

�� �
��

�
�

�(��	 ���� ��� ��	 ��
	 ��)	������� ��	 ���*	 ��	+������ �
 �� 	+�������� ,	 ���

��
 ���� ��	 ����
� �� ��	 ���*	 ������� �
 �����*	 �� �� ��� ��!���-	� ��
�� & ��� �������� .������� ���
 ���� ��/�
	 ��*	 �� & $� ��

Æ� � 	�$� � �

�
�� �

��

�
� ��� ��
 �����

& �� � �
�� �

�
��
�� �

��
�
�� �

�
��
�� �

��
� ��� �� �������

&
�� �

�
����� �� �

�� �

�
����� ��� � �� �

&

�
�� �

�
����� ���

�

�
�� �

�
�

�
�

�
�� ��

�� �

�
����� ��

�
�

��	�	���	

��#���� � &

��
���

Æ� �
� � �

�
���� � ���

�

�
���

&
�

�
��
�
�� � ���� � ��� ��

�

�
�

�
���� � �� �

�

�
�

���
 �����	�	
 ��	 ��	��	��

� ������� 	���
�����
��� � ������� 	���������� ��
���

0� ���

	�����
	 ��*	 �� ���	� ����� �� ��	 �	��	� �� ��	 ��
��
�	� �����!
"�������� ��� � �	�	��� 	!���	����� ������� ���*��	� ���� ��	
	���� ��� ��	
����� �	��*���*	 ��
 ��� �
 �����	� ��� ��� � � 1��
2� (��	 ���� ��)	�������
������ �� ���
���
�� ���
 ��������� �	���
	 ��	
	���� �	��*���*	
 ����� & ����
����� �� �
 �������	�
�	� � & $ ��� � & ��

� ���� ������ �� 	
������ �
 ���
	�� ����� ��� �����

�
�
����� �� 	�� �� �� 	�� ���

2 87T he Last - S t e p M inimax A lgo rit hm

������� �� ������ ���� �� ������ �	
 �� ������� �� ����
����	
�
 �� � ��	���	�

��
 �	� � � ������ ���	 ��
 �	� �	���	�� �����	�� �� � ������ � ���
��
�� ��

��� ��������� ��	���� ����
���� �� ����
����	
�
 ��

������� � �� ��� ���	��

���
�

�
 ��

�����

� ���	��	 ����� � 	�

�

�
���� �� �� ��� ���� �� ��� ���������� �� ���� �����

Æ� � ��������� � �� �	� ��
��� ��� 	�� ��	�
��� 	��

��� ���� � �� ������ �� ����� ����� �� ��� �� ��� ������� �

�

�

���
Æ�! "��

���������� �� �� ��� #���$���� %�����
 �� ������ �� �&�� �' �		�� �!�!�

��

�

� ��

�
� �	� ��
��� � �	� ��
��

�
�

����� 	�
 �������
�! ����'�� "�'���(� �
������� �� � �� �� ��� ����� �� ����
�� ��&�

� �	� ��
��
 � �	� ��
�� � ��	� ��
��
� ��

�
�
� ��	� ��
��

�

�
� ��

�

��

���	
���

 � �	� ��
�� � ��	� ��
��
� ��

�
�
� ��	��

�

�
� ��

�

��

���	
���

)��� ���� ��� ���� ���� ��	
��� �������� ��� ������ ������� � ���	�� ��� �
���	��

�
��� ����� ��� ������� �� �� ������� �' � ��������! *� ��� #���$���� %�����

���������� �� ��������� ��

��
 ��	� ��
�� �
� ��	��

�

� ��

�
���	
���

"�� "�'���(� �
������� �� � �&��

�����
 ����	� ��
��� � ����	� ��
���
� ��	���� ���

��
���	
���

 �	� ��
����	� ��
��� � �	� � �
��

�
	��

��	���� ���

��
���	
���
 �	+�

,��� �� ���� ��� ��������� �
 ��� ��� �������
 ������ � ��� �*�� �-� ���
�.��! *�������'

��� 	��

�
�

�� 	
	�

�

 ��� 	��

�
�	� ��
�� � �	�
��� 	���
��

�

2 88 Eiji T akimo t o and M anf re d K . W armut h

� ��� ��
�
� ��� ����� � ���� ������������ �������

�
�

�
� ���� ������������ �������� ��������

�
� ��� ��� ��� ����� � ��� ��������� ����������� �����

�
�

��
� �������� ���� ��������� ����

�	
�� ��
����� � �� ��� ������ ���� �����

Æ� � � �������� ����	 � ���

��
��������

�

�
���������

�	�� ��������	�� �	� �	������

��� �����	
 ��	���	�
� ��	� � ��������
� ���	 ��������

��� � ��
����� ��
��� ��������� �� �� �������� �������� � �� ������� �	�
!�����"

������ � ��
��

��

�
��

�
��� ���

�
�

�	
� #� 	���
� � �� � � �� �� � $��	%� ���� � �

�
�� ��! � ��� � �

�
��� &�

�	�� ����� �	� '���(���)������ *������	� ��!���� #��	

�� � �� � �� �
��	

��
�

����� � ����� � 	
��
�� �� ������� � �
�� ��
� ��� ������ �
 ��� �
�������
�����
� ��������� ��

������� � �
�� ����

�
��� 	�	��

!��� ��
�
�� "
#���
� $������ �����
���� ��� �
������� �����
� ���������
���$���� %��� ��� �
�� &
�#�
� ��� '��%
�$ ���������(�� ���� %�)#�� �
&�

�����
�� ����
�
�� ���&��#��� �#*�����$ *�#�$� +�,(

��� �����	
 ��	���	�
� ��	� � �����
� ���	 ����� ������	��

'��
 "
��
 �
 #��� ��
�� �
�
������
� ������
���� �
�
����� � ����������
��� $������

����� � ������

-� ���� �
�� %� �
&� �� � ���� .�� � � �.���� �� � +���,�
��� � � ������

�$ � ��� � �	� ���(��� �
������� �����
� ��������� ���$���� %���

�� � �	�� � �
�

� ��
������ ����� ����� ����� �

2 89T he Last - S t e p M inimax A lgo rit hm

����� � ����� � 	���
 ���
��� � ���� ���� ��� ������
� ��� ��������� �������
���
����� ��

�������
� � �

�� ����

���
��� ��	�	

!��"�
#���
 ��� ���� � � ������ $
#�% �� ���
 ��
&� �
� ��� '
�&��% ���
����� (�)*
+
&�"��
 ��� ��%%�� �
������ �� ���
�%�� �
����
� ��� �
� $��� ���������� �����
�,�%*

��������	
����

��� �#��
�� ��� ������#� �
 -#�.���� ��/�#��� �
� #���#� %���#���
��*

���������

�� �� ������ ����������	
�������
�	 ������� �� ��������
�� �	��
���
������ �����
�
�����

�� �� ������ �
� �� �� �������� ������ � ��!! "��
�! #�� �
$��
� ��
!��� �!����$
���
 %��� ��� �&	�
�
���� #����� �# ��!���"����
!� '
 ���
������� �� ��� ���������
��������
� �� ��
�������� �� �����
��	 ����		����
�� 	���! (�)*+� ��
 ,��
-�!-��
.�� ����� �����
 ���#��

� /� �		��� �
 ��-��
� 0���
�
��

(� 1� ���
���2$3���!�
� ����������� ��� ����������	 ����	��� �� ��������
�	 ������
������ .��-��!���� ��4��

*� 5� ,��!���� 1
 ������ � ��!! "��
�! �
 ��
�������� ��
��� �����!!��
� '
 !"�� ��#
����������	 �������$� �� �$��������	� �� ����$������ ������ 	���! �6�)��+�
�����

�� 7� ,���
�� 8����-��
� � "�
��� !�9��
-� ����!� �! %��� �! ��� �	����� "��!�� -��
�
'
 ���
% &�� ���$% ����% �� ����$�% '������� ������ 	���! ��)��� �.� 8��!!�
3�% 7��:� 37� ���6�

6� 5� ��!!�
�
� ,�!��� �
#�������
 �
� !��-��!��- -��	��&���� ���� �����
����� ��
����������� ������ *�;�<=*+)*4� ���6�

4� 7� �� �����:� � >
� ��!�� !�9��
���� -���
� �# !�
��� ��!!���!� ���(% �����% ���%�
�(=�4�)��6� ���4�

�� 5� /�:��-�� �
� �� �����
� �!��	����-���� ��
���& ������ #�� �&	�
�
���� #���$
���!� '
 �� �)&*� 	���! 66�)66�� ���4�

�� 5� /�:��-�� �
� �� �����
� �!��	����-���� ��
���& ������ "� "���! ��&����!� '

���� ���)&+� �����

�+� ?� /�:����� �
� �� �������� /�� ��
���& !������� #�� @��!!��
 ��
!��� �!��$
�����
� '
 � ������ �� �,' "---� �+++�

��� A� B�� �
� �� �����
� �!��	����- ��
���& ������ #�� ���� -��	��!!��
� ���"��
��
�
� 	����-���
� ���� ����% �� ����������� ������ *6;�<=*(�)**�� �+++�

��� �� 7���
�!��� � ��-�!��
$��������- �&��
!��
 �# !��-��!��- -��	��&��� �
� ��!
�		��-����
! �� ����
�
�� ���� �����
���� �� ����������� ������ **;*<=�*�*)
(�� 5��� �����

�(� �� 7���
�!��� ?&��
��� !��-��!��- -��	��&��� �
� ��
���& ������ � ��!! �
���!�!�
'
 ���
% !-�� ������������	 ��������
� �� �	��������
 '������� ����� # �')
&&� ����� �4�+ �# '�
�$�� .���� �� �����
��	 ����		����
�� 	���! �6)(�� �	��
���$

������ �����

2 9 0 Eiji T akimo t o and M anf re d K . W armut h

Rough Sets and Ordinal Classification

Jan C. Bioch and Viara Popova

Dept. of Computer Science, Erasmus University Rotterdam
P.O. Box 1738, 3000 DR Rotterdam.

{bioch,popova}@few.eur.nl

Abstract. The classical theory of Rough Sets describes objects by dis-
crete attributes, and does not take into account the ordering of the at-
tributes values. This paper proposes a modification of the Rough Set
approach applicable to monotone datasets. We introduce respectively
the concepts of monotone discernibility matrix and monotone (object)
reduct. Furthermore, we use the theory of monotone discrete functions
developed earlier by the first author to represent and to compute deci-
sion rules. In particular we use monotone extensions, decision lists and
dualization to compute classification rules that cover the whole input
space. The theory is applied to the bankruptcy problem.

1 Introduction

Ordinal classification refers to the category of problems, in which the attributes
of the objects to be classified are ordered. Ordinal classification has been studied
by a number of authors, e.g. [1,16,5,18,12]. The classical theory of Rough Sets
does not take into account the ordering of the attribute values. While this is
a general approach that can be applied on a wide variety of data, for specific
problems we might get better results if we use this property of the problem. This
paper proposes a modification of the Rough Sets approach applicable to mono-
tone datasets. Monotonicity appears as a property of many real-world problems
and often conveys important information. Intuitively it means that if we increase
the value of a condition attribute in a decision table containing examples, this
will not result in a decrease in the value of the decision attribute. Therefore,
monotonicity is a characteristic of the problem itself and when analyzing the
data we get more appropriate results if we use methods that take this additional
information into account. Our approach uses the theory of monotone discrete
functions developed earlier in [2]. We introduce respectively monotone decision
tables/datasets, monotone discernibility matrices and monotone reducts in sec-
tion 2 and consider some issues of complexity. In section 3 we introduce mono-
tone discrete functions and show the relationship with Rough Set Theory. As a
corollary we find an efficient alternative way to compute classification rules. In
section 4 we discuss a bankruptcy problem earlier investigated in [12]. It appears
that our method is more advantageous in several aspects. Conclusions are given
in section 5.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 291–305, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

292 Jan C. Bioch and Viara Popova

2 Monotone Information Systems

An information system S is a tuple S = {U, A, V } where: U = {x1, x2, . . . , xn} is
a non-empty, finite set of objects (observations, examples), A = {a1, a2, . . . , am}
is a non-empty, finite set of attributes, and V = {V1, V2, . . . , Vm} is the set of
domains of the attributes in A. A decision table is a special case of an information
system where among the attributes in A we distinguish one called a decision
attribute. The other attributes are called condition attributes. Therefore: A = C∪
{d}, C = {a1, a2, . . . , am} where ai - condition attributes, d - decision attribute.

We call the information system S = {U, C∪{d}, V } monotone when for each
couple xi, xj ∈ U the following holds:

ak(xi) ≥ ak(xj), ∀ak ∈ C ⇒ d(xi) ≥ d(xj) , (1)

where ak(xi) is the value of the attribute ak for the object xi. The following
example will serve as a running example for this paper.

Example 1. The following decision table represents a monotone dataset:

Table 1. Monotone decision table

U a b c d

1 0 1 0 0
2 1 0 0 1
3 0 2 1 2
4 1 1 2 2
5 2 2 1 2

2.1 Monotone Reducts

Let S = {U, C ∪ {d}, V } be a decision table. In the classical rough sets theory,
the discernibility matrix (DM) is defined as follows:

(cij) =
{
{a ∈ A : a(xi) �= a(xj)} for i, j : d(xi) �= d(xj)
∅ otherwise . (2)

The variation of the DM proposed here is the monotone discernibility ma-
trix Md(S) defined as follows:

(cij) =
{
{a ∈ A : a(xi) > a(xj)} for i, j : d(xi) > d(xj)
∅ otherwise . (3)

Based on the monotone discernibility matrix, the monotone discernibility
function can be constructed following the same procedure as in the classical
Rough Sets approach. For each non-empty entry of the monotone Md cij =

Rough Sets and Ordinal Classification 293

{ak1 , ak2 , . . . , akl
} we construct the conjunction C = ak1 ∧ ak2 ∧ . . . ∧ akl

. The
disjunction of all these conjunctions is the monotone discernibility function:

f = C1 ∨C2 ∨ . . . ∨ Cp . (4)

The monotone reducts of the decision table are the minimal transversals of
the entries of the monotone discernibility matrix. In other words the monotone
reducts are the minimal subsets of condition attributes that have a non-empty
intersection with each non-empty entry of the monotone discernibility matrix.
They are computed by dualizing the Boolean function f , see [3,2,15]. In section
3.3 we give another equivalent definition for a monotone reduct described from
a different point of view.

Example 2. Consider the decision table from example 1. The general and mono-
tone discernibility matrix modulo decision for this table are respectively:

Table 2. General decision matrix

1 2 3 4 5

1 ∅
2 a, b ∅
3 b, c a, b, c ∅
4 a, c b, c ∅ ∅
5 a, b, c a, b, c ∅ ∅ ∅

Table 3. Monotone decision matrix

1 2 3 4 5

1 ∅
2 a ∅
3 b, c b, c ∅
4 a, c b, c ∅ ∅
5 a, b, c a, b, c ∅ ∅ ∅

The general discernibility function is f(a, b, c) = ab ∨ ac ∨ bc. Therefore, the
general reducts of table 1 are respectively: {a, b}, {a, c} and {b, c} and the core is
empty. However, the monotone discernibility function is g(a, b, c) = a∨bc. So the
monotone reducts are: {a, b} and{a, c}, and the monotone core is {a}. It can be
proved that monotone reducts preserve the monotonicity property of the dataset.

Complexity Generating a reduct of minimum length is an NP-hard problem.
Therefore, in practice a number of heuristics are preferred for the generation of
only one reduct. Two of these heuristics are the ”Best Reduct” method [13]
and Johnson’s algorithm [14]. The complexity of a total time algorithm for
the problem of generating all minimal reducts (or dualizing the discernibility
function) has been intensively studied in Boolean function theory, see [3,10,2].
Unfortunately, this problem is still unsolved, but a quasi-polynomial algorithm
is known [11]. However, these results are not mentioned yet in the rough set
literature, see e.g. [15].

2.2 Heuristics

As it was mentioned above, two of the more successful heuristics for generat-
ing one reduct are the Johnson’s algorithm and the ”Best reduct” heuristic.

294 Jan C. Bioch and Viara Popova

Strictly speaking these methods do not necessarily generate reducts, since the
minimality requirement is not assured. Therefore, in the sequel we will make the
distinction between reducts vs minimal reducts. A good approach to solve the
problem is to generate the reduct and then check whether any of the subsets is
also a reduct. The Johnson heuristic uses a very simple procedure that tends
to generate a reduct with minimal length (which is not guaranteed, however).
Given the discernibility matrix, for each attribute the number of entries where it
appears is counted. The one with the highest number of entries is added to the
future reduct. Then all the entries containing that attribute are removed and
the procedure repeats until all the entries are covered. It is logical to start the
procedure with simplifying the set of entries (removing the entries that contain
strictly or non strictly other elements). In some cases the results with and with-
out simplification might be different. The ”Best reduct” heuristic is based on
the significance of attributes measure. The procedure starts with the core and
on each step adds the attribute with the highest significance, if added to the
set, until the value reaches one. In many of the practical cases the two heuristics
give the same result, however, they are not the same and a counter example can
be given. The dataset discussed in section 4, for example, gives different results
when the two heuristics are applied (see [4]).

2.3 Rule Generation

The next step in the classical Rough Set approach [17,15] is, for the chosen
reduct, to generate the value (object) reducts using a similar procedure as for
computing the reducts. A contraction of the discernibility matrix is generated
based only on the attributes in the reduct. Further, for each row of the matrix, the
object discernibility function is constructed - the discernibility function relative
to this particular object. The object reducts are the minimal transversals of the
object discernibility functions.

Using the same procedure but on the monotone discernibility matrix, we can
generate the monotone object reducts. Based on them, the classification rules
are constructed. For the monotone case we use the following format:

if (ai1 ≥ v1) ∧ (ai2 ≥ v2) ∧ . . . ∧ (ail
≥ vl) then d ≥ vl+1 . (5)

It is also possible to construct the classification rules using the dual format:

if (ai1 ≤ v1) ∧ (ai2 ≤ v2) ∧ . . . ∧ (ail
≤ vl) then d ≤ vl+1 . (6)

This type of rules can be obtained by the same procedure only considering
the columns of the monotone discernibility matrix instead of the rows. As a
result we get rules that cover at least one example of class smaller than the
maximal class value and no examples of the maximal class.

It can be proved that in the monotone case it is not necessary to generate
the value reducts for all the objects - the value reducts of the minimal vectors
of each class will also cover the other objects from the same class. For the rules

Rough Sets and Ordinal Classification 295

with the dual format we consider respectively the maximal vectors of each class.
Tables 4 and 5 show the complete set of rules generated for the whole table.

A set of rules is called a cover if all the examples with class d ≥ 1 are covered,
and no example of class 0 is covered. The minimal covers (computed by solving
a set-covering problem) for the full table are shown in tables 6 and 7. In this
case the minimal covers correspond to the unique minimal covers of the reduced
tables associated with respectively the monotone reducts {a,b} and {a,c}.

Table 4. Monotone decision rules

class d ≥ 2 class d ≥ 1

a ≥ 2 a ≥ 1
b ≥ 2
a ≥ 1 ∧ b ≥ 1
c ≥ 1

Table 5. The dual format rules

class d ≤ 0 class d ≤ 1

a ≤ 0 ∧ b ≤ 1 b ≤ 0
a ≤ 0 ∧ c ≤ 0 c ≤ 0

Table 6. mincover ab

class d ≥ 2 class d ≥ 1

a ≥ 1 ∧ b ≥ 1 a ≥ 1
b ≥ 2

Table 7. mincover ac

class d ≥ 2 class d ≥ 1

c ≥ 1 a ≥ 1

Table 8. mincover ab (dual format)

class d ≤ 0 class d ≤ 1

a ≤ 0 ∧ b ≤ 1 b ≤ 0

Table 9. mincover ac (dual format)

class d ≤ 0 class d ≤ 1

a ≤ 0 ∧ c ≤ 0 c ≤ 0

The set of rules with dual format is not an addition but rather an alternative
to the set rules of the other format. If used together they may be conflicting
in some cases. It is known that the decision rules induced by object reducts in
general do not cover the whole input space. Furthermore, the class assigned by
these decision rules to an input vector is not uniquely determined. We therefore
briefly discuss the concept of an extension of a discrete data set or decision table
in the next section.

3 Monotone Discrete Functions

The theory of monotone discrete functions as a tool for data-analysis has been
developed in [2]. Here we only briefly review some concepts that are crucial for

296 Jan C. Bioch and Viara Popova

our approach. A discrete function of n variables is a function of the form:

f : X1 ×X2 × . . .×Xn → Y ,

where X = X1 ×X2 × . . .×Xn and Y are finite sets. Without loss of generality
we may assume: Xi = {0, 1, . . . , ni} and Y = {0, 1, . . . , m}. Let x, y ∈ X be two
discrete vectors. Least upper bounds and greatest lower bounds will be defined
as follows:

x ∨ y = v, where vi = max{xi, yi} (7)

x ∧ y = w, where wi = min{xi, yi} . (8)

Furthermore, if f and g are two discrete functions then we define:

(f ∨ g)(x) = max{f(x), g(x)} (9)

(f ∧ g)(x) = min{f(x), g(x)} . (10)

(Quasi) complementation for X is defined as: x = (x1, x2, . . . , xn), where xi =
ni − xi. Similarly, the complement of j ∈ Y is defined as j = m − j. The
complement of a discrete function f is defined by: f(x) = f(x). The dual of a
discrete function f is defined as: fd(x) = f(x). A discrete function f is called
positive (monotone non-decreasing) if x ≤ y implies f(x) ≤ f(y).

3.1 Representations

Normal Forms Discrete variables are defined as:

xip = if xi ≥ p then m else 0, where 1 ≤ p ≤ ni, i ∈ (n] = {1, . . . , n} . (11)

Thus: xip+1 = if xi ≤ p then m else 0. Furthermore, we define xini+1 = 0
and xini+1 = m. Cubic functions are defined as:

cv,j = j.x1v1x2v2 · · ·xnvn . (12)

Notation: cv,j(x) = if x ≥ v then j else 0, j ∈ (m].
Similarly, we define anti-cubic functions by:

aw,i = i ∨ x1w1+1 ∨ x2w2+1 · · · ∨ xnwn+1 . (13)

Notation: aw,i(x) = if x ≤ w then i else m, i ∈ [m) = {0, . . . , m − 1}. Note,
that j.xip denotes the conjunction j ∧xip, where j ∈ Y is a constant, and xipxjq

denotes xip∧xiq . A cubic function cv,j is called a prime implicant of f if cv,j ≤ f
and cv,j is maximal w.r.t. this property. The DNF of f :

f =
∨
v,j

{cv,j | v ∈ j ∈ (m]} , (14)

is a unique representation of f as a disjunction of all its prime implicants (v is
a minimal vector of class d ≥ j).

Rough Sets and Ordinal Classification 297

If xip is a discrete variable and j ∈ Y a constant then xd
ip = xip+1 and jd = j.

The dual of the positive function f =
∨

v,j j.cv,j equals fd =
∧

v,j j ∨ av,j.

Example 3. Let f be the function defined by table 6 and let e.g. x11 denote
the variable: if a ≥ 1 then 2 else 0, etc. Then f = 2.(x11x21 ∨ x22) ∨ 1.x11,
and fd = 2.x12x21 ∨ 1.x22.

Decision Lists

In [2] we have shown that monotone functions can effectively be represented by
decision lists of which the minlist and the maxlist representations are the most
important ones. We introduce these lists here only by example. The minlist
representation of the functions f and fd of example 2 are respectively:

f(x) = if x ≥ 11, 02 then 2 else if x ≥ 10 then 1 else 0, and
fd(x) = if x ≥ 21 then 2 else if x ≥ 02 then 1 else 0.

The meaning of the minlist of f is given by:
if (a ≥ 1 ∧ b ≥ 1) ∨ b = 2 then 2 else if a ≥ 1 then 1 else 0.

The maxlist of f is obtained from the minlist of fd by complementing the mini-
mal vectors as well as the function values, and by reversing the inequalities. The
maxlist representation of f is therefore:

f(x) = if x ≤ 01 then 0 else if x ≤ 20 then 1 else 2, or equivalently:
if a = 0 ∧ b ≤ 1 then 0 else if b = 0 then 1 else 2.

The two representations are equivalent to the following table that contains re-
spectively the minimal and maximal vectors for each decision class of f . Each
representation can be derived from the other by dualization.

Table 10. Two representations of f

minvectors maxvectors class
11, 02 2

10 20 1
01 0

3.2 Extensions of Monotone Datasets

A partially defined discrete function (pdDf) is a function: f : D �→ Y, where D ⊆
X. We assume that a pdDf f is given by a decision table such as e.g. table 1.
Although pdDfs are often used in practical applications, the theory of pdDfs is
only developed in the case of pdBfs (partially defined Boolean functions). Here
we discuss monotone pdDfs, i.e. functions that are monotone on D. If the func-
tion f̂ : X �→ Y , agrees with f on D: f̂(x) = f(x), x ∈ D, then f̂ is called an
extension of the pdDf f . The collection of all extensions forms a lattice: for, if f1

and f2 are extensions of the pdDf f , then f1 ∧ f2 and f1 ∨ f2 are also extensions

298 Jan C. Bioch and Viara Popova

of f . The same holds for the set of all monotone extensions. The lattice of all
monotone extensions of a pdDf f will be denoted here by E(f). It is easy to see
that E(f) is universally bounded: it has a greatest and a smallest element. The
maxlist of the maximal element called the maximal monotone extension can be
directly obtained from the decision table.

Definition 1 Let f be a monotone pdDf. Then the functions fmin and fmax are
defined as follows:

fmin(x) =
{

max{f(y) : y ∈ D ∩ ↓x} if x ∈ ↑D
0 otherwise (15)

fmax(x) =
{

min{f(y) : y ∈ D ∩ ↑x} if x ∈ ↓D
m otherwise . (16)

Lemma 1 Let f be a monotone pdDf. Then
a) fmin, fmax ∈ E(f).
b) ∀f̂ ∈ E(f) : fmin ≤ f̂ ≤ fmax .

Since E(f) is a distributive lattice, the minimal and maximal monotone ex-
tension of f can also be described by the following expressions:

fmax =
∨
{ f̂ | f̂ ∈ E(f)} and fmin =

∧
{ f̂ | f̂ ∈ E(f)} . (17)

Notation: Let Tj(f) := {x ∈ D : f(x) = j}. A minimal vector v of class j is a
vector such that f(v) = j and no vector strictly smaller than v is also in Tj(f).
Similarly, a maximal vector w is a vector maximal in Tj(f), where j = f(w).
The sets of minimal and maximal vectors of class j are denoted by minTj(f)
and maxTj(f) respectively.

According to the previous lemma fmin and fmax are respectively the minimal
and maximal monotone extension of f . Decision lists of these extensions can be
directly constructed from f as follows. Let Dj := D∩Tj(f), then minTj(fmin) =
minDj and maxTj(fmax) = maxDj .

Example 4. Consider the pdDf given by table 1, then its maximal extension is:

f(x) = if x ≤ 010 then 0
else if x ≤ 100 then 1

else 2 .

As described in the last subsection, from this maxlist representation we can de-
duce directly the minlist representation of the dual of f and finally by dualization
we find that f is:

f = 2.(x12 ∨ x11x21 ∨ x22 ∨ x31) ∨ 1.x11 . (18)

However, f can be viewed as a representation of table 4! This suggests a close re-
lationship between minimal monotone decision rules and the maximal monotone
extension fmax. This relationship is discussed in the next section.The relation-
ship with the methodology LAD (Logical Analysis of Data) is briefly discussed
in subsection 3.5.

Rough Sets and Ordinal Classification 299

3.3 The relationship between monotone decision rules and fmax

We first redefine the concept of a monotone reduct in terms of discrete functions.
Let X = X1 ×X2 × . . .×Xn be the input space, and let A = [1, . . . , n] denote
the set of attributes. Then for U ⊆ A, x ∈ X we define the set U.x respectively
the vector x.U by:

U.x = {i ∈ U : xi > 0} (19)

and

(x.U)i =
{

xi if i ∈ U
0 if i /∈ U . (20)

Furthermore, the characteristic set U of x is defined by U = A.x.

Definition 2 Suppose f : D → Y is a monotone pdDf, w ∈ D and f(w) = j.
Then V ⊆ A is a monotone w-reduct iff ∀x ∈ D : (f(x) < j ⇒ w.U �≤ x.U).

Note, that in this definition the condition w.U �≤ x.U is equivalent to w.U �≤ x.
The following lemma is a direct consequence of this definition.

Lemma 2 Suppose f is a monotone pdDf, w ∈ Tj(f). Then V ⊆ A is a mono-
tone w-reduct ⇔ ∀x(f(x) < j ⇒ ∃i ∈ V such that wi > xi) .

Corollary 1 V is a monotone w-reduct iff V.w is a monotone w-reduct. There-
fore, w.l.o.g. we may assume that V is a subset of the characteristic set W of w:
V ⊆ W .

Monotone Boolean functions

We first consider the case that the dataset is Boolean: so the objects are described
by condition and decision attributes taking one of two possible values {0, 1}. The
dataset represents a partially defined Boolean function (pdBf) f : D → {0, 1}
where D ⊆ {0, 1}n. As we have only two classes, we define the set of true vectors
of f by T (f) := T1(f) and the set of false vectors of f by F (f) := T0(f) .

Notation: In the Boolean case we will make no distinction between a set V and
its characteristic vector v.

Lemma 3 Let f : D → {0, 1} be a monotone pdBf, w ∈ D, w ∈ T (f). Suppose
v ≤ w. Then v is a w-reduct ⇔ v ∈ T (fmax) .

Proof: Since v ≤ w, we have
v is a w-reduct ⇔ ∀x(x ∈ D ∩ F (f) ⇒ v �≤ x) ⇔ v ∈ T (fmax) .

Theorem 1 Suppose f : D → {0, 1} is a monotone pdBf, w ∈ D, w ∈ T (f).
Then, for v ≤ w, v ∈ minT (fmax) ⇔ v is a minimal monotone w-reduct.

300 Jan C. Bioch and Viara Popova

Proof: Let v ∈ minT (fmax) and v ≤ w for some w ∈ D. Then v is a monotone w-
reduct. Suppose ∃u < v and u is a monotone w-reduct. Then by definition 2 we
have: u ∈ T (fmax), which contradicts the assumption that v ∈ minT (fmax).

Conversely, let v be a minimal monotone w-reduct. Then by lemma 3 we have:
v ∈ T (fmax). Suppose ∃u < v : u ∈ T (fmax). However, v ≤ w ⇒ u < w ⇒ U is
a monotone w-reduct, which contradicts the assumption that v is a minimal w-
reduct.

The results imply that the irredundant (monotone) decision rules that cor-
respond to the object reducts are just the prime implicants of the maximal
extension.

Corollary 2 The decision rules obtained in rough set theory can be obtained by
the following procedure: a) find the maximal vectors of class 1 (positive examples)
b) determine the minimal vectors of the dual of the maximal extension and c)
compute the minimal vectors of this extension by dualization. The complexity of
this procedure is the same as for the dualization problem.

Although the above corollary is formulated for monotone Boolean functions,
results in [9] indicate that a similar statement holds for Boolean functions in
general.

Monotone discrete functions

Lemma 4 Suppose f is a monotone pdDf, w ∈ Tj(f) and v ≤ w. If v ∈
Tj(fmax) then the characteristic set V of v is a monotone w-reduct.

Proof: fmax(v) = j implies ∀x(f(x) < j ⇒ v �≤ x). Since w ≥ v we therefore
have ∀x(f(x) < j ⇒ ∃i ∈ V such that wi ≥ vj > xi) .
Remark: Even if in lemma 4 the vector v is minimal: v ∈ minTj(fmax), then
still V = A.v is not necessarily a minimal monotone w-reduct.

Theorem 2 Suppose f is a monotone pdDf and w ∈ Tj(f) . Then V ⊆ A is a
monotone w-reduct ⇔ fmax(w.V) = j .

Proof: If V is a monotone w-reduct, then by definition ∀x(f(x) < j ⇒ w.V �≤ x).
Since w.V ≤ w and f(w) = j we therefore have fmax(w.V) = j .

Conversely, let fmax(w.V) = j, V ⊆ A. Then, since w.V ≤ w and the
characteristic set of w.V is equal to V , lemma 4 implies that V is a monotone w-
reduct.

Theorem 3 Let f be a monotone pdDf and w ∈ Tj(f). If V ⊆ A is a minimal
monotone w-reduct, then ∃u ∈ minTj(fmax) such that V = A.u .

Proof: Since V is a monotone w-reduct, theorem 2 implies that fmax(w.V) = j.
Therefore, ∃u ∈ minTj(fmax) such that u ≤ w.V . Since A.u ⊆ V and A.u is a
monotone w-reduct (by lemma 4), the minimality of V implies A.u = V .

Rough Sets and Ordinal Classification 301

Theorem 3 implies that the minimal decision rules obtained by monotone w-
reducts are not shorter than the minimal vectors (prime implicants) of fmax.
This suggests that we can optimize a minimal decision rule by minimizing the
attribute values to the attribute values of a minimal vector of fmax. For example,
if V is a minimal monotone w-reduct and u ∈ minTj(fmax) such that u ≤ w.V
then the rule: ’if xi ≥ wi then j’, where i ∈ V can be improved by using the
rule: ’if xi ≥ ui then j’, where i ∈ V . Since ui ≤ wi, i ∈ V , the second rule is
applicable to a larger part of the input space X .

The results so far indicate the close relationship between minimal monotone
decision rules obtained by the rough sets approach and by the approach us-
ing fmax. To complete the picture we make the following observations:

Observation 1: The minimal vector u (theorem 3) is not unique.

Observation 2: Lemma 4 implies that the length of a decision rule induced by
a minimal vector v ≤ w, v ∈ minTj(fmax) is not necessarily smaller than that
of a rule induced by a minimal w-reduct. This means that there may exist an
x ∈ X that is covered by the rule induced by v but not by the decision rules
induced by the minimal reducts of a vector w ∈ D.

Observation 3: There may be minimal vectors of fmax such that ∀w ∈ D
v �≤ w. In this case if x ≥ v then fmax(x) = m but x is not covered by a minimal
decision rule induced by a minimal reduct.

In the next two subsections we briefly compare the rough set approach and the
discrete function approach with two other methods.

3.4 Monotone Decision Trees

Ordinal classification using decision trees is discussed in [1,5,18]. A decision tree
is called monotone if it represents a monotone function. A number of algorithms
are available for generating and testing the monotonicity of the tree [5,18]. Here
we demonstrate the idea with an example.

Example 5. A monotone decision tree corresponding to the pdDf given by table
1 and example 3 is represented in figure 1.

It can be seen that the tree contains information both on the corresponding
extension and its complement (or equivalently its dual). Therefore the decision
list representation tends to be more compact since we only need the information
about the extension - the dual can always be derived if necessary.

3.5 Rough Sets and Logical Analysis of Data

The Logical Analysis of Data methodology (LAD) was presented in [9] and
further developed in [8,6,7]. LAD is designed for the discovery of structural

302 Jan C. Bioch and Viara Popova

b ≥ 1��
��

a ≥ 1 ��
��

2

 �

�
��

b ≥ 2 ��
��

2
�

�� �
��

0

������� �������
a ≥ 1��

��

1
�

�� �
��

0

Fig. 1. Monotone decision tree representation of f

information in datasets. Originally it was developed for the analysis of Boolean
datasets using partially defined Boolean functions. An extension of LAD for the
analysis of numerical data is possible through the process of binarization. The
building concepts are the supporting set, the pattern and the theory.

A set of variables (attributes) is called a supporting set for a partially defined
Boolean function f if f has an extension depending only on these variables. A
pattern is a conjunction of literals such that it is 0 for every negative example
and 1 for at least one positive example. A subset of the set of patterns is used to
form a theory - a disjunction of patterns that is consistent with all the available
data and can predict the outcome of any new example. The theory is therefore
an extension of the partially defined Boolean function.

Our research suggests that the LAD and the RS theories are similar in several
aspects (for example, the supporting set corresponds to the reduct in the binary
case and a pattern with the induced decision rule). The exact connections will
be a subject of future research.

4 Experiments

4.1 The Bankruptcy Dataset

The dataset used in the experiments is discussed in [12]. The sample consists
of 39 objects denoted by F1 to F39 - firms that are described by 12 financial
parameters (see [4]). To each company a decision value is assigned - the expert
evaluation of its category of risk for the year 1988. The condition attributes
denoted by A1 to A12 take integer values from 0 to 4.

The decision attribute is denoted by d and takes integer values in the range 0
to 2 where: 0 means unacceptable, 1 means uncertainty and 2 means acceptable.

The data was first analyzed for monotonicity. The problem is obviously mono-
tone (if one company outperforms another on all condition attributes then it

Rough Sets and Ordinal Classification 303

should not have a lower value of the decision attribute). Nevertheless, one noisy
example was discovered, namely F24. It was removed from the dataset and was
not considered further.

4.2 Reducts and Decision Rules

The minimal reducts have been computed using our program ’the Dualizer’.
There are 25 minimal general reducts (minimum length 3) and 15 monotone
reducts (minimum length 4), see [4]. We have also compared the heuristics to
approximate a minimum reduct: the best reduct method (for general reducts)
and the Johnson strategy (for general and monotone reducts), see [4].

Table 11 shows the two sets of decision rules obtained by computing the
object (value)- reducts for the monotone reduct (A1, A3, A7, A9). Both sets of
rules have minimal covers, of which the ones with minimum length are shown
in table 12. A minimum cover can be transformed into an extension if the rules
are considered as minimal/maximal vectors in a decision list representation. In
this sense the minimum cover of the first set of rules can be described by the
following function:

f = 2.x73x93 ∨ 1.(x33 ∨ x73 ∨ x11x93 ∨ x32x72) . (21)

The maximal extension corresponding to the monotone reduct (A1, A3, A7, A9)
is represented in table 13.

Table 11. The rules for (A1, A3, A7, A9)

class d ≥ 2 class d ≥ 1
A1 ≥ 3 A1 ≥ 3
A7 ≥ 4 A3 ≥ 3
A9 ≥ 4 A7 ≥ 3
A1 ≥ 2 ∧ A7 ≥ 3 A9 ≥ 4
A3 ≥ 2 ∧ A7 ≥ 3 A1 ≥ 1 ∧ A3 ≥ 2
A7 ≥ 3 ∧ A9 ≥ 3 A1 ≥ 1 ∧ A9 ≥ 3

A3 ≥ 2 ∧ A7 ≥ 2
A3 ≥ 2 ∧ A7 ≥ 1 ∧ A9 ≥ 3

class d ≤ 0 class d ≤ 1
A7 ≤ 0 A7 ≤ 2
A9 ≤ 1 A9 ≤ 2
A1 ≤ 0 ∧ A3 ≤ 0
A1 ≤ 0 ∧ A3 ≤ 2 ∧ A7 ≤ 1
A1 ≤ 0 ∧ A3 ≤ 1 ∧ A7 ≤ 2
A1 ≤ 0 ∧ A3 ≤ 2 ∧ A9 ≤ 2
A3 ≤ 0 ∧ A9 ≤ 2
A3 ≤ 1 ∧ A7 ≤ 2 ∧ A9 ≤ 2
A3 ≤ 2 ∧ A7 ≤ 1 ∧ A9 ≤ 2

The function f or equivalently its minlist we have found consists of only 5
decision rules (prime implicants). They cover the whole input space. Moreover,

304 Jan C. Bioch and Viara Popova

Table 12. The minimum covers for (A1, A3, A7, A9)

class d ≥ 2 class d ≥ 1
A7 ≥ 3 ∧ A9 ≥ 3 A3 ≥ 3

A7 ≥ 3
A1 ≥ 1 ∧ A9 ≥ 3
A3 ≥ 2 ∧ A7 ≥ 2

class d ≤ 0 class d ≤ 1
A1 ≤ 0 ∧ A3 ≤ 2 ∧ A7 ≤ 1 A7 ≤ 2
A1 ≤ 0 ∧ A3 ≤ 1 ∧ A7 ≤ 2 A9 ≤ 2
A3 ≤ 1 ∧ A7 ≤ 2 ∧ A9 ≤ 2

Table 13. The maximal extension for (A1, A3, A7, A9)

class d = 2 class d = 1
A1 ≥ 3 A3 ≥ 3
A3 ≥ 4 A7 ≥ 3
A7 ≥ 4 A1 ≥ 1 ∧ A3 ≥ 2
A9 ≥ 4 A1 ≥ 1 ∧ A9 ≥ 3
A1 ≥ 2 ∧ A7 ≥ 3 A3 ≥ 2 ∧ A7 ≥ 2
A3 ≥ 2 ∧ A7 ≥ 3 A3 ≥ 2 ∧ A7 ≥ 1 ∧ A9 ≥ 3
A7 ≥ 3 ∧ A9 ≥ 3

each possible vector is classified as d = 0, 1 or 2 and not as d ≥ 1 or d ≥ 2 like
in [12]. The latter paper uses both the formats shown in table 11 to describe
a minimum cover, resulting in a system of 11 rules. Using both formats at the
same time can result in much (possibly exponential) larger sets of rules. Another
difference between our approach and [12] is our use of the monotone discernibility
matrix. Therefore, we can compute all the monotone reducts and not only a
generalization of the ’best reduct’ as in [12].

5 Discussion and Further Research

Our approach using the concepts of monotone discernibility matrix/function and
monotone (object) reduct and using the theory of monotone discrete functions
has a number of advantages summarized in the discussion on the experiment with
the bankruptcy dataset in section 4. Furthermore, it appears that there is close
relationship between the decision rules obtained using the rough set approach
and the prime implicants of the maximal extension. Although this has been
shown for the monotone case this also holds at least for non-monotone Boolean
datasets. We have discussed how to compute this extension by using dualization.
The relationship with two other possible approaches for ordinal classification is
discussed in subsections 3.4 and 3.5. We also computed monotone decision trees
[5,18] for the datasets discussed in this paper. It appears that monotone decision
trees are larger because they contain the information of both an extension and
its dual! The generalization of the discrete function approach to non-monotone
datasets and the comparison with the theory of rough sets is a topic of further

Rough Sets and Ordinal Classification 305

research. Finally, the sometimes striking similarity we have found between Rough
Set Theory and Logical Analysis of Data remains an interesting research topic.

References

1. Ben-David, A.: Monotonicity Maintenance in Information-Theoretic Machine
Learning Algorithms. Machine Learning 19 (1995) 29–43 291, 301

2. Bioch, J. C.: Dualization, Decision Lists and Identification of Monotone Discrete
Functions. Annals of Mathematics and Artificial Intelligence 24 (1998) 69–91 291,
293, 295, 297

3. Bioch, J. C., Ibaraki, T.: Complexity of Identification and Dualization of Positive
Boolean Functions. Information and Computation 123 (1995) 50–63 293

4. Bioch, J. C., Popova, V.: The Rough Set and Ordinal Classification: The
Bankruptcy Problem. Technical Report Dept. of Computer Science, eur-few-cs-
0600, Erasmus University Rotterdam (2000) 294, 302, 303

5. Bioch, J. C., Potharst, R.: Decision Trees for Monotone Classification. in: K. van
Marcke and W. Daelmans (eds), Proceedings of the Dutch Artificial Conference on
Artificial Intelligence (NAIC’97), Antwerpen (1997) 361–369 291, 301, 304

6. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A.: Logical Analysis of Numeri-
cal Data. RUTCOR Research Report RRR 04-97, RUTCOR, Rutgers University
(1997) 301

7. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Logical Analysis of Numerical
Data. Mathematical Programming 79 (1997) 165–190 301

8. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.:An
Implementation of Logical Analysis of Data. RUTCOR Research Report RRR 22-
96, RUTCOR, Rutgers University (1996) 301

9. Crama, Y., Hammer, P. L., Ibaraki, T.: Cause-Effect Relationships and Partially
Defined Boolean Functions. Annals of Operations Research 16 (1988) 299–326 300,
301

10. Eiter, T., Gottlob, G.: Identifying the Minimal Transversals of a Hypergraph and
Related Problems. SIAM Journal on Computing 24 (1995) 1278–1304 293

11. Fredman, M., Khachiyan, L.: On the Complexity of Dualization of Monotone Dis-
junctive Normal Forms. Journal of Algorithms 21 (1996) 618–628 293

12. Greco, S., Matarazzo, B., Slowinski, R.: A New Rough Set Approach to Evaluation
of Bankruptcy Risk. in: C. Zopounidis (ed.), Operational Tools in the Management
of Financial Risks, Kluwer, Dordrecht (1998) 121–136 291, 302, 304

13. Hu, X., Cercone, N.: Learning in Relational Databases: a Rough Set Approach.
Computational Intelligence 11 (1995) 323–338 293

14. Johnson, D. S.: Approximation Algorithms for Combinatorial Problems. Journal
of Computer and System Sciences 9 (1974) 256–278 293

15. Komorowski, J., Polkowski, L., Skowron, A.: Rough Sets: A Tutorial.
http://www.esslli.let.uu.nl/Courses/skowron/skowron.ps 293, 294

16. Makino, K., Suda, T., Yano, K., Ibaraki, T.: Data Analysis by Positive Decision
Trees. In: Proceedings International symposium on cooperative database systems
for advanced applications (CODAS), Kyoto (1996) 282–289 291

17. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers (1991) 294

18. Potharst, R., Bioch, J. C.: Decision Trees for Ordinal Classification. Intelligent
Data Analysis 4 (2000) 1–15 291, 301, 304

A note on the generalization performance of
kernel classifiers with margin.

Theodoros Evgeniou and Massimiliano Pontil

Center for Biological and Computational Learning, MIT
45 Carleton Street E25-201, Cambridge, MA 02142, USA

{theos,pontil}@ai.mit.edu

Abstract. We present distribution independent bounds on the general-
ization misclassification performance of a family of kernel classifiers with
margin. Support Vector Machine classifiers (SVM) stem out of this class
of machines. The bounds are derived through computations of the Vγ

dimension of a family of loss functions where the SVM one belongs to.
Bounds that use functions of margin distributions (i.e. functions of the
slack variables of SVM) are derived.

1 Introduction

Deriving bounds on the generalization performance of kernel classifiers has been
an important theoretical topic of research in recent years [4, 8–10, 12]. We present
new bounds on the generalization performance of a family of kernel classifiers
with margin, from which Support Vector Machines (SVM) can be derived. The
bounds use the Vγ dimension of a class of loss functions, where the SVM one be-
longs to, and functions of the margin distribution of the machines (i.e. functions
of the slack variables of SVM - see below).

We consider classification machines of the form:

min
∑m

i=1 V (yi, f(xi))
subject to ‖f‖2

K ≤ A2 (1)

where we use the following notation:

– Dm = {(x1, y1), . . . , (xm, ym)}, with (xi, yi) ∈ Rn×{−1, 1} sampled accord-
ing to an unknown probability distribution P (x, y), is the training set.

– V (y, f(x)) is the loss function measuring the distance (error) between f(x)
and y.

– f is a function in a Reproducing Kernel Hilbert Space (RKHS) H defined
by kernel K, with ‖f‖2

K being the norm of f in H [11, 2]. We also call f a
hyperplane, since it is such in the feature space induced by the kernel K [11,
10].

– A is a constant.

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 30 6 - 31 5 , 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

Classification of a new test point x is always done by simply considering the sign
of f(x).

Machines of this form have been motivated in the framework of statistical
learning theory. We refer the reader to [10, 6, 3] for more details. In this paper
we study the generalization performance of these machines for choices of the
loss function V that are relevant for classification. In particular we consider the
following loss functions:

– Misclassification loss function:

V (y, f(x)) = V msc(yf(x)) = θ(−yf(x)) (2)

– Hard margin loss function:

V (y, f(x)) = V hm(yf(x)) = θ(1− yf(x)) (3)

– Soft margin loss function:

V (y, f(x)) = V sm(yf(x)) = |1− yf(x)|+, (4)

where θ is the Heavyside function and |x|+ = x, if x is positive and zero
otherwise. Loss functions (3) and (4) are “margin” ones because the only case
they do not penalize a point (x, y) is if yf(x) ≥ 1. For a given f , these are
the points that are correctly classified and have distance |f(x)|

‖f‖2 ≥ 1
‖f‖2 from the

surface f(x) = 0 (hyperplane in the feature space induced by the kernel K [10]).
For a point (x, y), quantity yf(x)

‖f‖ is its margin, and the probability of having
yf(x)
‖f‖ ≥ δ is called the margin distribution of hypothesis f . For SVM, quantity
|1 − yif(xi)|+ is known as the slack variable corresponding to training point
(xi, yi) [10].

We will also consider the following family of margin loss functions (nonlinear
soft margin loss functions):

V (y, f(x)) = V σ(yf(x)) = |1− yf(x)|σ+. (5)

Loss functions (3) and (4) correspond to the choice of σ = 0, 1 respectively.
In figure 1 we plot some of the possible loss functions for different choices of the
parameter σ.

To study the statistical properties of machines (1) we use some well known results
that we now briefly present. First we define some more notation, and then state
the results from the literature that we will use in the next section.

We use the following notation:

– RV
emp(f) =

∑m
i=1 V (yi, f(xi)) is the empirical error made by f on the train-

ing set Dm, using V as the loss function.

30 7Ge ne raliz at io n Pe rf o rmanc e o f K e rne l C lassif ie rs w it h M argin

0

0.5

1

1.5

2

2.5

3

-4 -3 -2 -1 0 1 2 3 4

V

yf(x)

Fig. 1. Hard margin loss (line with diamond-shaped points), soft margin loss (solid
line), nonlinear soft margin with σ = 2 (line with crosses), and σ = 1

2 (dotted line)

– RV (f) =
∫

Rn×{−1,1} V (y, f(x)) P (x, y) dx dy is the expected error of f

using V as the loss function.
– Given a hypothesis space of functions F (i.e. F = {f ∈ H : ‖f‖2 ≤ A2}), we

note by hVF
γ the Vγ dimension of the loss function V (y, f(x)) in F , which is

defined as follows [1]:

Definition 1. Let A ≤ V (y, f(x)) ≤ B, f ∈ F , with A and B < ∞. The Vγ-
dimension of V in F (of the set of functions {V (y, f(x)) | f ∈ F}) is defined as
the the maximum number h of vectors (x1, y1) . . . , (xh, yh) that can be separated
into two classes in all 2h possible ways using rules:

class 1 if: V (yi, f(xi)) ≥ s + γ
class -1 if: V (yi, f(xi)) ≤ s− γ

for f ∈ F and some s ≥ 0. If, for any number m, it is possible to find m points
(x1, y1) . . . , (xm, ym) that can be separated in all the 2m possible ways, we will
say that the Vγ-dimension of V in F is infinite.

If instead of a fixed s for all points we use a different si for each (xi, yi), we
get what is called the fat-shattering dimension fatγ [1]. Notice that definition
(1) includes the special case in which we directly measure the Vγ dimension of
the space of functions F , i.e. V (y, f(x)) = f(x). We will need such a quantity
in theorem 2.2 below.

Using the Vγ dimension we can study the statistical properties of machines of
the form (1) based on a standard theorem that characterizes the generalization
performance of these machines.

30 8 T he o do ro s Ev ge nio u and M assimiliano Po nt il

Theorem 1 (Alon et al., 1997). Let A ≤ V (y, f(x)) ≤ B, f ∈ F , F be a set
of bounded functions. For any ε ≥ 0, for all m ≥ 2

ε2 we have that if hVF
γ is the

Vγ dimension of V in F for γ = αε (α ≥ 1
48), hVF

γ finite, then:

Pr

{
sup
f∈F

∣∣RV
emp(f)−RV (f)

∣∣ > ε

}
≤ G(ε,m, hVF

γ), (6)

where G is an increasing function of hVF
γ and a decreasing function of ε and m,

with G → 0 as m →∞.

In [1] the fat-shattering dimension was used, but a close relation between
that and the Vγ dimension [1] make the two equivalent for our purpose1. Closed
forms of G can be derived (see for example [1]) but we do not present them here
for simplicity of notation. Notice that since we are interested in classification,
we only consider ε < 1, so we will only discuss the case γ < 1 (since γ is about
1
48ε).

In “standard” statistical learning theory the VC dimension is used instead
of the Vγ one [10]. However, for the type of machines we are interested in the
VC dimension turns out not to be appropriate: it is not influenced by the choice
of the hypothesis space F through the choice of A, and in the case that F is an
infinite dimensional RKHS, the VC-dimension of the loss functions we consider
turns out to be infinite (see for example [5]). Instead, scale-sensitive dimensions
(such as the Vγ or fat-shattering one [1]) have been used in the literature, as we
will discuss in the last section.

2 Main results

We study the loss functions (2 - 5). For classification machines the quantity
we are interested in is the expected misclassification error of the solution f of
problem 1. With some abuse of notation we note this with Rmsc. Similarly we
will note with Rhm, Rsm, and Rσ the expected risks using loss functions (3),
(4) and (5), respectively, and with Rhm

emp, Rsm
emp, and Rσ

emp, the corresponding
empirical errors. We will not consider machines of type (1) with V msc as the loss
function, for a clear reason: the solution of the optimization problem:

min
∑m

i=1 θ(−yif(xi))
subject to ‖f‖2

K ≤ A2

is independent of A, since for any solution f we can always rescale f and have
the same cost

∑m
i=1 θ(−yif(xi)).

For machines of type (1) that use V sm or V σ as the loss function, we prove
the following:

1 In [1] it is shown that Vγ ≤ fatγ ≤ 1
γ V γ

2
.

30 9Ge ne raliz at io n Pe rf o rmanc e o f K e rne l C lassif ie rs w it h M argin

Theorem 2. The Vγ dimension h for |1 − yf(x)|σ+ in hypothesis spaces FA =
{f ∈ H|‖f‖2

K ≤ A2} (of the set of functions |1 − yf(x)|σ+ | f ∈ FA}) and
y ∈ {−1, 1}, is finite for ∀ 0 < γ. If D is the dimensionality of the RKHS H, R2

is the radius of the smallest sphere centered at the origin containing the data x
in the RKHS, and B > 1 is an upper bound on the values of the loss function,
then h is upper bounded by:

– O(min(D, R2A2

γ
2
σ

)) for σ < 1

– O(min(D, (σB
σ−1

σ)2R2A2

γ2)) for σ ≥ 1

Proof
The proof is based on the following theorem [7] (proved for the fat-shattering

dimension, but as mentioned above, we use it for the “equivalent” Vγ one).

Theorem 2.2 [Gurvits, 1997] The Vγ dimension h of the set of functions2

FA = {f ∈ H|‖f‖2
K ≤ A2} is finite for ∀ γ > 0. If D is the dimensionality of

the RKHS, then h ≤ O(min(D, R2A2

γ2)), where R2 is the radius of the smallest
sphere in the RKHS centered at the origin here the data belong to.

Let 2N be the largest number of points {(x1, y1), . . . , (x2N , y2N)} that can
be shattered using the rules:

class 1 if |1− yif(xi)|σ+ ≥ s + γ
class − 1 if |1− yif(xi)|σ+ ≤ s− γ

(7)

for some s with 0 < γ ≤ s. After some simple algebra these rules can be decom-
posed as:

class 1 if f(xi)− 1 ≤ −(s + γ)
1
σ (for yi = 1)

or f(xi) + 1 ≥ (s + γ)
1
σ (for yi = −1)

class − 1 if f(xi)− 1 ≥ −(s− γ)
1
σ (for yi = 1)

or f(xi) + 1 ≤ (s− γ)
1
σ (for yi = −1)

(8)

From the 2N points at least N are either all class -1, or all class 1. Consider the
first case (the other case is exactly the same), and for simplicity of notation let’s
assume the first N points are class -1. Since we can shatter the 2N points, we
can also shatter the first N points. Substituting yi with 1, we get that we can
shatter the N points {x1, . . . ,xN} using rules:

class 1 if f(xi) + 1 ≥ (s + γ)
1
σ

class − 1 if f(xi) + 1 ≤ (s− γ)
1
σ

(9)

Notice that the function f(xi) + 1 has RKHS norm bounded by A2 plus a
constant C (equal to the inverse of the eigenvalue corresponding to the constant

2 As mentioned above, in this case we can consider V (y, f(x)) = f(x).

31 0 T he o do ro s Ev ge nio u and M assimiliano Po nt il

basis function in the RKHS - if the RKHS does not include the constant func-
tions, we can define a new RKHS with the constant and use the new RKHS
norm). Furthermore there is a “margin” between (s + γ)

1
σ and (s − γ)

1
σ which

we can lower bound as follows.
For σ < 1, assuming 1

σ is an integer (if not, we can take the closest lower
integer),

1
2

(
(s + γ)

1
σ − (s− γ)

1
σ

)
= (10)

=
1
2
((s + γ)− (s− γ))

⎛⎝ 1
σ −1∑
k=0

(s + γ)
1
σ −1−k(s− γ)k

⎞⎠ ≥ γγ
1
σ −1 = γ

1
σ . (11)

For σ ≥ 1, σ integer (if not, we can take the closest upper integer) we have that:

2γ =
(
(s + γ)

1
σ

)σ

−
(
(s− γ)

1
σ

)σ

= (12)

= ((s + γ)
1
σ − (s− γ)

1
σ)

(
σ−1∑
k=0

((s + γ)
1
σ)σ−1−k((s− γ)

1
σ)k

)
≤

≤ ((s + γ)
1
σ − (s− γ)

1
σ)σB

σ−1
σ

from which we obtain:

1
2

(
(s + γ)

1
σ − (s− γ)

1
σ

)
≥ γ

σB
σ−1

σ

(13)

Therefore N cannot be larger than the Vγ dimension of the set of functions
with RKHS norm ≤ A2 + C and margin at least γ

1
σ for σ < 1 (from eq. (11))

and γ

σB
σ−1

σ

for σ ≥ 1 (from eq. (13)). Using theorem 2.2, and ignoring constant

factors (also ones because of C), the theorem is proved. �

In figure 2 we plot the Vγ dimension for R2A2 = 1, B = 1, γ = 0.9, and
D infinite. Notice that as σ → 0, the dimension goes to infinity. For σ = 0
the Vγ dimension becomes the same as the VC dimension of hyperplanes, which
is infinite in this case. For σ increasing above 1, the dimension also increases:
intuitively the margin γ becomes smaller relatively to the values of the loss
function.

Using theorems 2 and 1 we can bound the expected error of the solution f
of machines (1):

Pr
{∣∣RV

emp(f)−RV (f)
∣∣ > ε

}
≤ G(ε,m, hγ), (14)

where V is V sm or V σ. To get a bound on the expected misclassification error
Rmsc(f) we use the following simple observation:

V msc(y, f(x)) ≤ V σ(y, f(x)) for ∀ σ, (15)

31 1Ge ne raliz at io n Pe rf o rmanc e o f K e rne l C lassif ie rs w it h M argin

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

V

Sigma

Fig. 2. Plot of the Vγ dimension as a function of σ for γ = .9

So we can bound the expected misclassification error of the solution of machine
(1) under V sm and V σ using the Vγ dimension of these loss functions and the
empirical error of f measured using again these loss functions. In particular we
get that for ∀σ, with probability 1− G(ε,m, h

V σ
F

γ):

Rmsc(f) ≤ Rσ
emp(f) + ε (16)

where ε and γ are related as stated in theorem 1.

Unfortunately we cannot use theorems 2 and 1 for the V hm loss function.
For this loss function, since it is a binary-valued function, the Vγ dimension is
the same as the VC-dimension, which, as mentioned above, is not appropriate to
use in our case. Notice, however, that for σ → 0, V σ approaches V hm pointwise
(from theorem 2 the Vγ dimension also increases towards infinity). Regarding
the empirical error, this implies that Rσ → Rhm, so, theoretically, we can still
bound the misclassification error of the solution of machines with V hm using:

Rmsc(f) ≤ Rhm
emp(f) + ε + max(Rσ

emp(f)−Rhm
emp(f), 0), (17)

where Rσ
emp(f) is measured using V σ for some σ. Notice that changing σ we get

a family of bounds on the expected misclassification error. Finally, we remark
that it could be interesting to extend theorem 2 to loss functions of the form
θ(1− yf(x))h(1− yf(x)), with h any continuous monotone function.

3 Discussion

In recent years there has been significant work on bounding the generalization
performance of classifiers using scale-sensitive dimensions of real-valued func-

31 2 T he o do ro s Ev ge nio u and M assimiliano Po nt il

tions out of which indicator functions can be generated through thresholding
(see [4, 9, 8],[3] and references therein). This is unlike the “standard” statisti-
cal learning theory approach where classification is typically studied using the
theory of indicator functions (binary valued functions) and their VC-dimension
[10]. The work presented in this paper is similar in spirit with that of [3], but
significantly different as we now briefly discuss.

In [3] a theory was developed to justify machines with “margin”. The idea was
that a “better” bound on the generalization error of a classifier can be derived by
excluding training examples on which the hypothesis found takes a value close
to zero (as mentioned above, classification is performed after thresholding a real
valued function). Instead of measuring the empirical misclassification error, as
suggested by the standard statistical learning theory, what was used was the
number of misclassified training points plus the number of training points on
which the hypothesis takes a value close to zero. Only points classified correctly
with some “margin” are considered correct. In [3] a different notation was used:
the parameter A in equation (1) was fixed to 1, while a margin ψ was introduced
inside the hard margin loss, i.e θ(ψ − yf(x)). Notice that the two notations are
equivalent: given a value A in our notation we have ψ = A−1 in the notation of
[3]. Below we adapt the results in [3] to the setup of this paper, that is, we set
ψ = 1 and let A vary. Two main theorems were proven in [3].

Theorem 3 (Bartlett, 1998). For a given A, with probability 1 − δ, every
function f with ‖f‖2

K ≤ A2 has expected misclassification error Rmsc(f) bounded
as:

Rmsc(f) < Rhm
emp(f) +

√
2
m

(dln(34em/d) log2(578m) + ln(4/δ), (18)

where d is the fat-shattering dimension fatγ of the hypothesis space {f : ‖f‖2
K ≤

A2} for γ = 1
16A .

Unlike in this paper, in [3] this theorem was proved without using theorem 1.
Although practically both bound (18) and the bounds derived above are not
tight and therefore not practical, bound (18) seems easier to use than the ones
presented in this paper.

It is important to notice that, like bounds (14), (16), and (17), theorem 3
holds for a fixed A [3]. In [3] theorem 3 was extended to the case where the
parameter A (or ψ in the notations of [3]) is not fixed, which means that the
bound holds for all functions in the RKHS. In particular the following theorem
gives a bound on the expected misclassification error of a machine that holds
uniformly over all functions:

Theorem 4 (Bartlett, 1998). For any f with ‖f‖K < ∞, with probability
1− δ, the misclassification error Rmcs(f) of f is bounded as:

Rmsc(f) < Rhm
emp(f) +

√
2
m

(dln(34em/d) log2(578m) + ln(8‖f‖/δ), (19)

where d is the fat-shattering dimension fatγ of the hypothesis space consisting
of all functions in the RKHS with norm ≤ ‖f‖2

K, and with γ = 1
32‖f‖ .

31 3Ge ne raliz at io n Pe rf o rmanc e o f K e rne l C lassif ie rs w it h M argin

Notice that the only differences between (18) and (19) are the ln(8‖f‖/δ) instead
of ln(4/δ), and that γ = 1

32‖f‖ instead of γ = 1
16A .

So far we studied machines of the form (1), where A is fixed a priori. In
practice learning machines used, like SVM, do not have A fixed a priori. For
example in the case of SVM the problem is formulated [10] as minimizing:

min
∑m

i=1 |1− yif(xi)|+ + λ‖f‖2
K (20)

where λ is known as the regularization parameter. In the case of machines (20)
we do not know the norm of the solution ‖f‖2

K before actually solving the op-
timization problem, so it is not clear what the “effective” A is. Since we do not
have a fixed upper bound on the norm ‖f‖2

K a priori, we cannot use the bounds
of section 2 or theorem 3 for machines of the form (20). Instead, we need to use
bounds that hold uniformly for all A (or ψ if we follow the setup of [3]), for
example the bound of theorem 4, so that the bound also holds for the solution
of (20) we find. In fact theorem 4 has been used directly to get bounds on the
performance of SVM [4]. A straightforward applications of the methods used to
extend theorem 3 to 4 can also be used to extend the bounds of section 2 to the
case where A is not fixed (and therefore hold for all f with ‖f‖ < ∞), and we
leave this as an exercise.

There is another way to see the similarity between machines (1) and (20).
Notice that the formulation (1) the regularization parameter λ of (20) can be seen
as the Lagrange multiplier used to solve the constrained optimization problem
(1). That is, problem (1) is equivalent to:

maxλminf

m∑
i=1

V (yi, f(xi)) + λ(‖f‖2
K −A2) (21)

for λ ≥ 0, which is similar to problem (20) that is solved in practice. However
in the case of (21) the Lagrange multiplier λ is not known before having the
training data, unlike in the case of (20).

So, to summarize, for the machines (1) studied in this paper, A is fixed a
priori and the “regularization parameter” λ is not known a priori, while for ma-
chines (20) the parameter λ is known a priori, but the norm of the solution (or
the effective A) is not known a priori. As a consequence we can use the theorems
of this paper for machines (1) but not for (20). To do the second we need a
technical extension of the results of section 2 similar to the extension of theorem
3 to 4 done in [3]. On the practical side, the important issue for both machines
(1) and (20) is how to choose A or λ. We believe that the theorems and bounds
discussed in sections 2 and 3 cannot be practically used for this purpose. Criteria
for the choice of the regularization parameter exist in the literature - such as
cross validation and generalized cross validation - (for example see [10, 11],[6]
and references therein), and is the topic of ongoing research. Finally, as our re-
sults indicate, the generalization performance of the learning machines can be
bounded using any function of the slack variables and therefore of the margin
distribution. Is it, however, the case that the slack variables (margin distribu-
tions or any functions of these) are the quantities that control the generalization

31 4 T he o do ro s Ev ge nio u and M assimiliano Po nt il

performance of the machines, or there are other important geometric quantities
involved? Our results suggest that there are many quantities related to the gen-
eralization performance of the machines, but it is not clear that these are the
most important ones.

Acknowledgments:
We wish to thank Peter Bartlett for useful comments.

References

1. N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimen-
sions, uniform convergnce, and learnability. J. of the ACM, 44(4):615–631, 1997.

2. N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 686:337–
404, 1950.

3. P. Bartlett. The sample complexity of pattern classification with neural networks:
the size of the weights is more important that the size of the network. IEEE
Transactions on Information Theory, 1998.

4. P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machine and other patern classifiers. In C. Burges B. Scholkopf, editor, Advances
in Kernel Methods–Support Vector Learning. MIT press, 1998.

5. T. Evgeniou and M. Pontil. On the V-gamma dimension for regression in Repro-
ducing Kernel Hilbert Spaces. In Proceedings of Algorithmic Learning Theory,
Tokyo, Japan, 1999.

6. T. Evgeniou, M. Pontil, and T. Poggio. Regularization Networks and Support
Vector Machines. Advances in Computational Mathematics Vol. 13, No. 1, pp.
1–50, 2000.

7. L. Gurvits. A note on scale-sensitive dimension of linear bounded functionals in
banach spaces. In Proceedings of Algorithm Learning Theory, 1997.

8. J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk
minimization over data-dependent hierarchies. IEEE Transactions on Information
Theory, 1998. To appear. Also: NeuroCOLT Technical Report NC-TR-96-053,
1996, ftp://ftp.dcs.rhbnc.ac.uk/pub/neurocolt/tech reports.

9. J. Shawe-Taylor and N. Cristianini. Robust bounds on generalization from the
margin distribution. Technical Report NeuroCOLT2 Technical Report NC2-TR-
1998-029, NeuroCOLT2, 1998.

10. V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
11. G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics,

Vol. 59, SIAM, Philadelphia, 1990.
12. R. Williamson, A. Smola, and B. Scholkopf. Generalization performance of regu-

larization networks and support vector machines via entropy numbers. Technical
Report NC-TR-98-019, Royal Holloway College University of London, 1998.

31 5Ge ne raliz at io n Pe rf o rmanc e o f K e rne l C lassif ie rs w it h M argin

On the Noise Model of Support Vector Machines
Regression

Massimiliano Pontil, Sayan Mukherjee, and Federico Girosi

Center for Biological and Computational Learning, MIT
45 Carleton Street E25-201, Cambridge, MA 02142, USA

{pontil,sayan,girosi}@ai.mit.edu

Abstract. Support Vector Machines Regression (SVMR) is a learn-
ing technique where the goodness of fit is measured not by the usual
quadratic loss function (the mean square error), but by a different loss
function called the ε-Insensitive Loss Function (ILF), which is similar
to loss functions used in the field of robust statistics. The quadratic
loss function is well justified under the assumption of Gaussian additive
noise. However, the noise model underlying the choice of the ILF is not
clear. In this paper the use of the ILF is justified under the assumption
that the noise is additive and Gaussian, where the variance and mean of
the Gaussian are random variables. The probability distributions for the
variance and mean will be stated explicitly. While this work is presented
in the framework of SVMR, it can be extended to justify non-quadratic
loss functions in any Maximum Likelihood or Maximum A Posteriori ap-
proach. It applies not only to the ILF, but to a much broader class of
loss functions.

1 Introduction

Support Vector Machines Regression (SVMR) [8, 9] has a foundation in the
framework of statistical learning theory and classical regularization theory for
function approximation [10, 1]. The main difference between SVMR and classical
regularization is the use of the ε-Insensitive Loss Function (ILF) to measure the
empirical error. The quadratic loss function commonly used in regularization
theory is well justified under the assumption of Gaussian, additive noise. In the
case of SVMR it is not clear what noise model underlies the choice of the ILF.
Understanding the nature of this noise is important for at least two reasons: 1) it
can help us decide under which conditions it is appropriate to use SVMR rather
than regularization theory; and 2) it may help to better understand the role of
the parameter ε, which appears in the definition of the ILF, and is one of the
two free parameters in SVMR.

In this paper we demonstrate the use of the ILF is justified under the as-
sumption that the noise affecting the data is additive and Gaussian, where the
variance and mean are random variables whose probability distributions can be
explicitly computed. The result is derived by using the same Bayesian frame-
work which can be used to derive the regularization theory approach, and it is
an extension of existing work on noise models and “robust” loss functions [2].

H . A rimura, S . J ain and A . S harma (Eds.) : A LT 2 0 0 0 , LNA I 1 9 6 8, pp. 31 6 - 32 4, 2 0 0 0 .
c S pringe r- V e rlag Be rlin H e ide lbe rg 2 0 0 0

The plan of the paper is as follows: in section 2 we briefly review SVMR
and the ILF; in section 3 we introduce the Bayesian framework necessary to
prove our main result, which is shown in section 4. In section 5 we show some
additional results which relate to the topic of robust statistics.

2 The ε-Insensitive Loss Function

Consider the following problem: we are given a data set g = {(xi, yi)}N
i=1, ob-

tained by sampling, with noise, some unknown function f(x) and we are asked
to recover the function f , or an approximation of it, from the data g. A common
strategy consists of choosing as a solution the minimum of a functional of the
following form:

H[f] =
l∑

i=1

V (yi − f(xi)) + αΦ[f], (1)

where V (x) is some loss function used to measure the interpolation error, α is
a positive number, and Φ[f] is a smoothness functional. SVMR correspond to a
particular choice for V , that is the ILF, plotted below in figure (1):

V (x) ≡ |x|ε ≡
{

0 if |x| < ε
|x| − ε otherwise. (2)

ε x

V (x)

Fig. 1. The ILF Vε(x).

Details about minimizing the functional (1) and the specific form of the smooth-
ness functional (1) can be found in [8, 1, 3].

The ILF is similar to some of the functions used in robust statistics [5], which
are known to provide robustness against outliers. However the function (2) is not

31 7On t he No ise M o de l o f S uppo rt V e c t o r M ac hine s Re gre ssio n

only a robust cost function, because of its linear behavior outside the interval
[−ε, ε], but also assigns zero cost to errors smaller then ε. In other words, for
the cost function Vε any function closer than ε to the data points is a perfect
interpolant.
It is important to notice that if we choose V (x) = x2, then the functional (1)
is the usual regularization theory functional [11, 4], and its minimization leads
to models which include Radial Basis Functions or multivariate splines. The
ILF represents therefore a crucial difference between SVMR and more classical
models such as splines and Radial Basis Functions. What is the rationale for
using the ILF rather than a quadratic loss function like in regularization theory?
In the next section we will introduce a Bayesian framework that will allow us to
answer this question.

3 Bayes Approach to SVMR

In this section, the standard Bayesian framework is used to justify the variational
approach in equation (1). Work on this topic was originally done by Kimeldorf
and Wahba, and we refer to [6, 11] for details.

Suppose that the set g = {(xi, yi) ∈ Rn × R}N
i=1 of data has been obtained

by randomly sampling a function f , defined on Rn, in the presence of additive
noise, that is

f(xi) = yi + δi, i = 1, . . . , N (3)

where δi are random independent variables with a given distribution. We want
to recover the function f , or an estimate of it, from the set of data g. We take a
probabilistic approach, and regard the function f as the realization of a random
field with a known prior probability distribution. We are interested in maximizing
the a posteriori probability of f given the data g, which can be written, using
Bayes’ theorem, as following:

P [f |g] ∝ P [g|f] P [f], (4)

where P [g|f] is the conditional probability of the data g given the function f and
P [f] is the a priori probability of the random field f , which is often written as
P [f] ∝ e−αΦ[f], where Φ[f] is usually a smoothness functional. The probability
P [g|f] is essentially a model of the noise, and if the noise is additive, as in
equation (3) and i.i.d. with probability distribution P (δ), it can be written as:

P [g|f] =
N∏

i=1

P (δi). (5)

Substituting equation (5) in equation (4), it is easy to see that the function
that maximizes the posterior probability of f given the data g is the one that
minimizes the following functional:

H[f] = −
N∑

i=1

log P (f(xi)− yi) + αΦ[f] . (6)

31 8 M assimiliano Po nt il e t al.

This functional is of the same form as equation (1), once we identify the loss
function V (x) as the log-likelihood of the noise. If we assume that the noise in
equation (3) is Gaussian, with zero mean and variance σ, then the functional
above takes the form:

H[f] =
1

2σ2

N∑
i=1

(yi − f(xi))2 + αΦ[f],

which corresponds to the classical regularization theory approach [11, 4]. In order
to obtain SVMR in this approach one would have to assume that the probability
distribution of the noise is P (δ) = e−|δ|ε . Unlike an assumption of Gaussian noise,
it is not clear what motivates in this Bayesian framework such a choice. The next
section will address this question.

4 Main Result

In this section we build on the probabilistic approach described in the previous
section and on work done by Girosi [2], and derive a novel class of noise models
and loss functions.

4.1 The Noise Model

We start by modifying equation (5), and drop the assumption that noise variables
have all identical probability distributions. Different data points may have been
collected at different times, under different conditions, so it is more realistic to
assume that the noise variables δi have probability distributions Pi which are
not necessarily identical. Therefore we write:

P [g|f] =
N∏

i=1

Pi(δi). (7)

Now we assume that the noise distributions Pi are actually Gaussians, but do
not have necessarily zero mean, and define Pi as:

Pi(δi) ∝ e−βi(δi−ti)
2
. (8)

While this model is realistic, and takes into account the fact that the noise
could be biased, it is not practical because it is unlikely that we know the set of
parameters β ≡ {βi}N

i=1 and t = {ti}N
i=1. However, we may have some informa-

tion about β and t, for example a range for their values, or the knowledge that
most of the time they assume certain values. It is therefore natural to model
the uncertainty on β and t by considering them as i.i.d. random variables, with
probability distributions P(β, t) =

∏N
i=1 P (βi, ti). Under this assumption, equa-

tion (8) can be interpreted as Pi(δi|βi, ti), the conditional probability of δi given
βi and ti. Taking this in account, we can rewrite equation (4) as:

P [f |g,β, t] ∝
N∏

i=1

Pi(δi|βi, ti)P [f]. (9)

31 9On t he No ise M o de l o f S uppo rt V e c t o r M ac hine s Re gre ssio n

Since we are interested in computing the conditional probability of f given g,
independently of β and t, we compute the marginal of the distribution above,
integrating over β and t:

P∗[f |g] ∝
∫

dβ

∫
dt

N∏
i=1

Pi(δi|βi, ti)P [f]P(β, t). (10)

Using the assumption that β and t are i.i.d., so that P(β, t) =
∏N

i=1 P (βi, ti),
we can easily see that the function that maximizes the a posteriori probability
P∗[f |g] is the one that minimizes the following functional:

H[f] =
N∑

i=1

V (f(xi)− yi) + αΦ[f], (11)

where V is given by:

V (x) = − log
∫ ∞

0

dβ

∫ ∞

−∞
dt
√

βe−β(x−t)2P (β, t), (12)

where the factor
√

β appears because of the normalization of the Gaussian (other
constant factors have been disregarded). Equations (11) and (12) define a novel
class of loss functions, and provide a probabilistic interpretation for them: using
a loss function V with an integral representation of the form (12) is equivalent
to assuming that the noise is Gaussian, but the mean and the variance of the
noise are random variables with probability distribution P (β, t). The classical
quadratic loss function can be recovered by choosing P (β, t) = δ(β − 1

2σ2)δ(t),
which corresponds to standard Gaussian noise with variance σ and zero mean.

The class of loss functions defined by equation (12) is an extension of the
model discussed in [2], where only unbiased noise distributions are considered:

V (x) = − log
∫ ∞

0

dβ
√

βe−βx2
P (β). (13)

Equation (13) can be obtained from equation (12) by setting P (β, t) = P (β)δ(t).
In this case, the class of loss functions can be identified as follows: given a loss
function V in the model, the probability function P (β) in equation (13) in the
inverse Laplace transform of exp (−V (

√
x)). So V (x) verifies equation (13) if

the inverse Laplace transform on exp(−V (
√

x)) is nonnegative and integrable.
In practice this is very difficult to check directly. Alternative approaches are
discussed in [2]. A simple example of loss functions of type (13) is V (x) =
|x|a, a(0 , 2]. When a = 2 we have the classical quadratic loss function for which
P (β) = δ(β) . The case a = 1 corresponds to the L1 loss and equation (13) is
solved by: P (β) = β2 exp− 1

4β .

4.2 The Noise Model for the ILF

In order to provide a probabilistic interpretation the ILF we need to find a
probability distribution Pε(β, t) such that equation (12) is verified when we set

32 0 M assimiliano Po nt il e t al.

V (x) = |x|ε. This is a difficult problem, which requires the solution of an integral
equation. Here we state a solution, but we do not know whether this solution is
unique. The solution was found by extending work done by Girosi in [2] for the
case where ε = 0, which corresponds to the function V (x) = |x|. The solution
we found has the form P (β, t) = P (β)λε(t) where we have defined

P (β) =
C

β2
e−

1
4β , (14)

and

λε(t) =
1

2(ε + 1)
(
χ[−ε,ε](t) + δ(t− ε) + δ(t + ε)

)
, (15)

where χ[−ε,ε] is the characteristic function of the interval [−ε, ε] and C is a
normalization constant. Equations (14) and (15) arederived in the appendix. The
shape of the functions in equations (14) and (15) is shown in figure (2). The above
model has a simple interpretation: using the ILF is equivalent to assuming that
the noise affecting the data is Gaussian. However, the variance and the mean of
the Gaussian noise are random variables: the variance (σ2 = 1

2β) has a unimodal
distribution that does not depend on ε, and the mean has a distribution which
is uniform in the interval [−ε, ε], (except for two delta functions at ∓ε, which
ensure that the mean is occasionally exactly equal to ∓ε). The distribution of
the mean is consistent with the current understanding of the ILF: errors smaller
than ε do not count because they may be due entirely to the bias of the Gaussian
noise.

a) b)

Fig. 2. a) The probability distribution P (σ), where σ2 = 1
2β and P (β) is given by

equation 14 ; b) The probability distribution λε(x) for ε = .25 (see equation 15).

32 1On t he No ise M o de l o f S uppo rt V e c t o r M ac hine s Re gre ssio n

5 Additional Results

While it is difficult to state the class of loss functions with an integral represen-
tation of the type (12), it is possible to extend the results of the previous section
to a particular sub-class of loss functions, ones of the form:

Vε(x) =

⎧⎨⎩h(x) if |x| < ε

|x| otherwise,
(16)

where h(x) is some symmetric function, with some restriction that will become
clear later. A well known example is one of Huber’s robust loss functions [5], for
which h(x) = x2

2ε + ε
2 (see figure (3.a)). For loss functions of the form (16), it can

be shown that a function P (β, t) that solves equation (12) always exists, and it
has a form which is very similar to the one for the ILF. More precisely, we have
that P (β, t) = P (β)λε(t), where P (β) is given by equation (14), and λε(t) is the
following compact-support distribution:

λε(t) =
{

P (t)− P
′′
(t) if |t| < ε

0 otherwise,
(17)

where we have defined P (x) = e−Vε(x). This result does not guarantee, however,
that λε is a measure, because P (t) − P

′′
(t) may not be positive on the whole

interval [−ε, ε], depending on h. The positivity constraint defines the class of
“admissible” functions h. A precise characterization of the class of admissible
h, and therefore the class of “shapes” of the functions which can be derived in
this model is currently under study [7]. It is easy to verify that the Huber’s
loss function described above is admissible, and corresponds to a probability
distribution for which the the mean is equal to λε(t) = (1 + 1

ε − (t
ε)

2)e−
t2
2ε over

the interval [−ε, ε] (see figure (3.b)).

6 Conclusion and Future Work

An interpretation of the ILF for SVMR was presented. This will hopefully lead
to a better understanding of the assumptions that are implicitly made when
using SVMR. This work can be useful for the following two reasons: 1) it makes
more clear under which conditions it is appropriate to use the ILF rather than
the square error loss used in classical regularization theory; and 2) it may help
to better understand the role of the parameter ε. We have shown that the use
of the ILF is justified under the assumption that the noise affecting the data is
additive and Gaussian, but not necessarily zero mean, and that its variance and
mean are random variables with given probability distributions. Similar results
can be derived for some other loss functions of the “robust” type. However,
a clear characterization of the class of loss functions which can be derived in
this framework is still missing, and it is the subject of current work. While we
present this work in the framework of SVMR, similar reasoning can be applied

32 2 M assimiliano Po nt il e t al.

a) a)

Fig. 3. a) The Huber loss function; b) the corresponding λε(x), ε = .25. Notice the
difference between this distribution and the one that corresponds to the ILF: while for
this one the mean of the noise is zero most of the times, in the ILF all the values of
the mean are equally likely.

to justify non-quadratic loss functions in any Maximum Likelihood or Maximum
A Posteriori approach. It would be interesting to explore if this analysis can be
used in the context of Gaussian Processes to compute the average Bayes solution.

Acknowledgments
Federico Girosi wish to thank Jorg Lemm for inspiring discussions.

References

1. T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector
machines. Advances in Computational Mathematics, 13:1–50, 2000.

2. F. Girosi. Models of noise and robust estimates. A.I. Memo 1287, Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology, 1991.
ftp://publications.ai.mit.edu/ai-publications/1000-1499/AIM-1287.ps.

3. F. Girosi. An equivalence between sparse approximation and Support Vector Ma-
chines. Neural Computation, 10(6):1455–1480, 1998.

4. F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks
architectures. Neural Computation, 7:219–269, 1995.

5. P.J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.
6. G.S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on

stochastic processes and smoothing by splines. Ann. Math. Statist., 41(2):495–502,
1971.

7. M. Pontil, S. Mukherjee, and F. Girosi. On the noise model of support vec-
tor machine regression. A.I. Memo 1651, MIT Artificial Intelligence Lab., 1998.
ftp://publications.ai.mit.edu/ai-publications/1500-1999/AIM-1651.ps.

8. V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.
9. V. Vapnik, S.E. Golowich, and A. Smola. Support vector method for function

approximation, regression estimation, and signal processing. In M. Mozer, M. Jor-
dan, and T. Petsche, editors, Advances in Neural Information Processing Systems
9, pages 281–287, Cambridge, MA, 1997. The MIT Press.

32 3On t he No ise M o de l o f S uppo rt V e c t o r M ac hine s Re gre ssio n

10. V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
11. G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics,

Vol. 59, SIAM, Philadelphia, 1990.

Appendix

Proof of eq. 14

We look for a solution of eq. (12) of the type P (β, t) = P (β)λ(t). Computing
the integral in equation (12) with respect to β, we obtain:

e−V (x) =
∫ +∞

−∞
dtλ(t)G(x − t,) (18)

where we have defined:

G(t) =
∫ ∞

0

dβP (β)
√

βe−βt2 . (19)

Notice that the function G is, modulo a normalization constant, a density distri-
bution, because both the functions in the r.s.h. of equation (19) are overlapping
densities. In order to compute G we observe that for ε = 0, the function e−|x|ε
becomes the Laplace distribution which belongs to the model in equation (13).
Then, λε=0(t) = δ(t) and from equation (18) we have:

G(t) = e−|t|. (20)

Then, in view of the example discussed at the end of section 4.1 and equation
(20), the function P (β) in equation (19) is:

P (β) = β2e−
1
4β ,

which (modulo a constant factor) is equation (14). To derive equation (15), we
rewrite equation (18) in Fourier space:

F̃ [e−|x|ε] = G̃(ω)λ̃ε(ω), (21)

with:

F̃ [e−|x|ε] =
sin(εω) + ωcos(εω)

ω(1 + ω2)
, (22)

and:

G̃(ω) =
1

1 + ω2
. (23)

Plugging equation (22) and (23) in equation (21), we obtain:

λ̃ε(ω) =
sin(εω)

ω
+ cos(εω).

Finally, taking the inverse Fourier Transform and normalizing we obtain equa-
tion (15).

32 4 M assimiliano Po nt il e t al.

Computationally Efficient Transductive

Machines

Craig Saunders, Alex Gammerman, and Volodya Vovk

Royal Holloway, University of London
Egham, Surrey, England, TW20 0EX
¶craig,alex,vovk♦@dcs.rhbnc.ac.uk

Abstract. In this paper we propose a new algorithm for providing con-
fidence and credibility values for predictions on a multi-class pattern
recognition problem which uses Support Vector machines in its imple-
mentation. Previous algorithms which have been proposed to achieve
this are very processing intensive and are only practical for small data
sets. We present here a method which overcomes these limitations and
can deal with larger data sets (such as the US Postal Service database).
The measures of confidence and credibility given by the algorithm are
shown empirically to reflect the quality of the predictions obtained by
the algorithm, and are comparable to those given by the less computa-
tionally efficient method. In addition to this the overall performance of
the algorithm is shown to be comparable to other techniques (such as
standard Support Vector machines), which simply give flat predictions
and do not provide the extra confidence/credibility measures.

1 Introduction

Many risk-sensitive applications such as medical diagnosis, or financial analy-
sis require predictions to be qualified with some measure of confidence. Indeed
in general, any predictive machine-learning algorithm which requires human-
computer interaction, often benefits from giving qualified predictions. The us-
ability of the system is improved, and predictions with low confidence can be
filtered out and processed in a different manner.

In this paper we have two aims: firstly, we wish to provide confidence and
credibility values for our predictions, rather than the simple “flat” answer given
by many Machine Learning techniques (such as a standard Support Vector Ma-
chine [10]); secondly we want to obtain these values in an efficient manner so
that the algorithm is practical for large data sets, and does not suffer the time
penalties of previously proposed algorithms (e.g. those in [1,7]).

To achieve the confidence and credibility measures, we build on ideas of
algorithmic information theory (see [12]). By using these ideas, we are able to
provide confidence measures with a strong theoretical foundation, and which do
not rely on stronger assumptions than the standard i.i.d. one (we actually make
a slightly weaker assumption, that of exchangeability). This is in contrast to
many alternative methods (such as the Bayesian approach), which often require

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 325–337, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

326 Craig Saunders et al.

a prior probability (which is not known and has to be estimated), and confidence
measures are given on the assumption that this prior is the correct one. In order
to compute these values we use Support Vector Machines and the statistical
notion of p-values, in an extension of the ideas presented in [7]. The multi-class
method presented in that exposition however, was processing-intensive, and the
length of time required meant that the algorithm was not practical for medium
to large datasets. The method presented here (and originated in [11]) however,
overcomes these difficulties, and in section 4 experiments are conducted on much
larger data sets (e.g. 7900 training, 2000 test).

The layout of this paper is as follows. In section 2 we describe the the-
oretical motivation for the algorithm, then in section 3 we concentrate on a
specific implementation which uses Support Vector machines. In this section we
briefly describe a previous method of qualifying Support Vector method predic-
tions, and extend the technique to the multi-class case. The inefficiencies of this
method are presented, and a new algorithm is proposed. Experimental evidence
is presented in section 4 which indicates that as well as providing confidence
and credibility values, the algorithm’s predictive performance is comparable to
a standard Support Vector machine when using the same kernel function. Specif-
ically, experiments were carried out on the US Postal Service digit database, and
a comparison is made between the new algorithm, the algorithm presented in [7],
and a standard Support Vector Machine. In section 5 we discuss the merits of
this approach and suggest future directions of research.

2 Randomness

In [12] it was shown that approximations to universal confidence measures can be
computed, and used successfully as a basis for machine learning. In this section
we present a summary of the relevant ideas, which will provide a motivation for
the technique described in section 3. What we are principally interested in is
the randomness of a sequence z = (z1, . . . , zn) of elements of zi ∈ Z where Z is
some sample space (for the applications presented in this paper, z is a sequence
(x1, y1), . . . , (xl, yl), (xl+1, yl+1) where xi ∈ IRn, y ∈ Z, containing l training
examples and one test example along with some provisional classification). Let
P = P1,P2, . . . be a sequence of statistical models such that, for every n =
1, 2, . . . , Pn is a set of probability distributions in Zn. In this paper we will
only be interested in specific computable P (namely, the iid and exchangeability
models). We say that a function t : Z∗ → N (where N is the set {0, 1, . . .} of
non-negative integers) is a log-test for P-typicalness if

1. for all n ∈ N and m ∈ N and all P ∈ Pn, P{z ∈ Zn : t(z) ≥ m} ≤ 2−m.
2. t is semi-computable from below.

As proven by Kolmogorov and Martin-Löf (1996) (see also [4]), there exists a
largest, to within an additive constant, log-test for P-randomness, which is called
P-randomness deficiency. When Pn consists of all probability distributions of the
type Pn, P being a probability distribution in Z, we omit “P-” and speak of just

Computationally Efficient Transductive Machines 327

randomness deficiency. If d(z) is the randomness deficiency of a data sequence z,
we call δ(z) = 2−d(z) the randomness level of z. The randomness level δ is the
smallest, to within a constant factor, p-value function; the latter notion is defined
as follows: a function t : Z∗ → [0, 1]) is a p-value function w.r.t. the iid model if

1. for all n ∈ N and r ∈ [0, 1] and all distributions P ∈ Z,
Pn{z ∈ Zn : t(z) ≤ r} ≤ r. (1)

2. t must be semi-computable from above.

The randomness level is a universal measure of typicalness with respect to the
class of iid distributions: if the randomness level of z is close to 0, z is untypical.
Functions t which satisfy the above requirement are called p-typicalness tests.

2.1 Using Randomness

Unfortunately, this measure of typicalness is non-computable (and in practice
one has to use particular, easily computable, p-value functions). If however one
could compute the randomness deficiency of a sequence and we accept the iid
assumption and ignore computation time, then the problem of prediction would
become trivial. Assuming we have a training set (x1, y1), . . . , (xl, yl) and an
unlabelled test example xl+1, we can do the following:

1. Consider all possible values Y for the label yl+1, and compute the random-
ness level of every possible completion

(x1, y1), . . . , (xl, yl), (xl+1, Y)

2. Predict Y corresponding to the completion with the largest randomness level.
3. Output as the confidence in this prediction one minus the second largest

randomness level.
4. Output as the credibility the randomness level of the prediction.

The intuition behind confidence can be described with the following example.
Suppose we choose a “significance level” of 1%. If the confidence in our prediction
exceeds 99% and we are wrong, then the actual data sequence belongs to the
set of all data sequences with randomness level less than 1%, (which by (1) is
a very rare event). Credibility can be seen as a measure of quality of our data
set. Low credibility means that either the training set is non-random or the test
example is not representative of the test set.

2.2 Use in Practice

In order to use these ideas in practice, we will associate a strangeness measure
with each element in our extended training sequence (denoted αi). If we have
a strangeness measure which is invariant w.r.t. permutation of our data, the
probability of our test example being the strangest in the sequence is 1

l+1 .

328 Craig Saunders et al.

Because all permutations of strangeness measures are equiprobable, we can
generalise this into a valid p-typicalness function :

t(z) =
#{i : αi ≥ αl+1}

l + 1
.

This is the type of function we will use in order to approximate the randomness
level of a sequence. In this paper, our strangeness measures (αi) are constructed
from the Lagrange multipliers of the SV optimisation problem, or the distances
of examples from a hyperplane.

3 SV Implementation

In this section we describe a way of computing confidence and credibility values
which uses Support Vector Machines. We first describe and extend the method
outlined in [7] to the multi-class case. The new method presented later in this
section is more computationally efficient than the one presented in [7] (for timings
see section 4), allowing much larger datasets to be used.

3.1 Original Method

In [7], a method for two-class classification problems was presented. The method
involved adding a test example to the training set, along with a provisional
classification (say −1). A Support Vector machine was then trained on this
extended set, and the resultant Lagrange multipliers were used as a strangeness
measure. That is the following optimisation problem was solved :

max
l∑

i=1

αi −
1
2

∑
i,j=1,... ,l+1

αiαjyiyjK(xi,xj),

subject to the constraints,∑
i=1,... ,l+1

αi = 0, αi ≥ 0, i = 1, . . . , l + 1. (1)

The p-typicalness function took the form :

p− =
#{i : αi ≥ αl+1}

l + 1
.

The test example was then added to the training set with a provisional classifica-
tion of +1, and p+ was calculated in a similar fashion. Confidence and credibility
were then calculated as outlined in section 2.1.

Computationally Efficient Transductive Machines 329

Extension to Multi-Class Problems The method above can easily be ex-
tended to the multi-class case. Consider an n-class pattern recognition problem.
This time, for each test example, n optimisation problems have to be solved (one
for each possible classification). We generate n “one against the rest” classifiers,
each time using the resultant α-values to calculate p-typicalness as follows. For
each class m ∈ {1, . . . , n}, train an m-against-the-rest Support Vector machine,
and calculate pm as :

pm =
#{i : (αi ≥ αl+1) ∧ (yi = m)}

|Sm|
,

where
Sm = {(xi, yi) : yi = m)}.

That is, for each classifier, we only use the α-values which correspond to the
provisional classification given, in our calculation of p-typicalness. Unfortunately,
although this method works in practice, it is rather inefficient and can only be
used on small data sets. Consider as an example of a medium-large problem,
the well known 10-class digit recognition problem of the US Postal Service data
set. To train a single “one vs. the rest” SV machine on this data set takes
approximately 2 minutes. Therefore, to use the above method to classify a test
set of 2000 examples, it would take approximately 2×10×2007 = 40140 minutes.
Which is roughly 1 month! Clearly this is unacceptable, and an improvement has
to be found.

3.2 New Method

The general idea is as follows; we create a hash function fh : IRd → {1, . . . , h},
which when given a training vector xi, returns a value in the range {1, . . . , h}.
This is used to create a total of h ∗ n subsets of our training data (where n is
the number of classes in our training set). For each class in the training set,
a Support Vector Machine is trained in the following way. For every possible
output of the hash function j, train a Support Vector Machine each time leaving
out of the training process those examples which both are a member of the class
being considered, and return a value of j from the hash function.

More formally, we have the following. We are given a training set T which
consists of l examples and their labels (x1, y1), . . . , (xl, yl), where xk ∈ IRd

and yk ∈ {1, . . . , n}. We also have a hash function fh : IRd → {1, . . . , h}. Note
that the hash function should be chosen so that it is “pseudo-random” and
splits the training set into roughly equal portions. The hash function used in
the experiments in this paper simply computed the sum of all attribute values
modulo h plus 1.

First of all we create nh sets Si,j from our training set

Si,j = {(xk, 1) : yk = i, fh(xk) �= j} ∪ {(xk,−1) : yk �= i}, (2)

330 Craig Saunders et al.

where i = 1, . . . , n and j = 1, . . . , h. On each of these sets we train a Support
Vector Machine. That is, we obtain hn functions of the form

Fi,j(x) =
∑

k:(xk,yk)∈Si,j

αkykK(xk,x),

where K is some kernel function, and the αi’s are obtained by solving the fol-
lowing optimisation problems; maximise

l∑
k=1

αk −
1
2

∑
k,m:(xk,yk),(xm,ym)∈Si,j

αkαmykymK(xk,xm),

subject to the constraints,∑
k:(xk,yk)∈Si,j

ykαk = 0, αk ≥ 0, k = 1, . . . , |Si,j |.

This is similar to the “one against the rest” method which is often used in
multi-class Support Vector Machines [9]. For our purposes though, we create
several “one against the rest” classifiers for every class, each time only includ-
ing positive examples which have a particular value when the hash function is
applied.

3.3 Classification, Confidence, and Credibility

The procedure for classifying a new test example is given by Algorithm 1. In a
nutshell the procedure simply applies the hash function to some new example
xnew, then for each class identifies a working set (denoted Wi) and a particular
function Fi,j (which did not use any element of the working set in its creation).
The function Fi,j is then used to obtain the distance to the hyperplane for each
element of the working set, and our new example (these distances are denoted
by d1, . . . , d|Wi|, dnew). Note that “distance” here is defined as the output of a
function Fi,j(x), and therefore can be negative (if the point x lies on a specific
side of the hyperplane). In order to give confidence and credibility values for the
new example, we compute the example’s p-value for each possible classification.
Once the distances d1, . . . , d|Wi|, dnew to the hyperplane for a particular working
set Wi (including our new test example) have been calculated, the p-value is sim-
ple to compute. The ideal situation is where our new example is the “strangest”
example of the working set. For this algorithm the strangest example is the one
with the smallest distance to the hyperplane (recall that “distance” in this sense
can be negative, so the smallest dk is either the example furthest on the “wrong”
side of the hyperplane for classification c, or if all examples are on the positive
side, the example closest to the hyperplane). The probability that our example
xnew has the smallest valued distance to the hyperplane out of all examples in
the working set is simply

P

{
dnew < min

1≤k≤|Wi|
dk

}
≤ 1
|Wi|+ 1

,

Computationally Efficient Transductive Machines 331

Algorithm 1 Classifying a new test sample xnew

Obtain jnew = fh(xnew).
for Each class i in training set do

Create a working set Wi which includes all examples in the training set with yk = i
and fh(xk) = jnew (i.e. Wi = ¶x : fh(xk) = jnew, yk = i, k = 1, . . . , l♦).
For every example in Wi and xnew use Fi,jnew (see eq (2)) to get the distance dk

from the hyperplane.
Compute p-value (pi) for new example, where pi = #{k:dk≤dnew}

|Wi|+1

end for
Predicted classification is argmax

i
pi.

Confidence in prediction is 1 − max
j �=i

pj .

Credibility of prediction is max
i

pi.

(since all permutations of d1, . . . , d|Wi|, dnew are equiprobable).
The distances from the hyperplane are a valid strangeness measure (i.e. they

are invariant under permutation), so we can construct a valid p-typicalness func-
tion as follows :

pi =
#{k : dk ≤ dnew}

|Wi|+ 1
.

As stated in Algorithm 1, our prediction for xnew is given by the classification
which yielded the highest p-value. In an ideal case, the p-value associated with
the correct classification will be high, say ≥ 95%, and for all other classifications
it will be low, say ≤ 5%. In this case both confidence and credibility will be high
and our prediction is deemed to be reliable. If however the example looks very
strange when given all possible classifications (i.e. the highest p-value is low, e.g.
≤ 10%), then although confidence may be high (all other p-values may still be
≤ 5%), our credibility will be low. The intuition here would be: although we are
confident in our prediction (the likelihood of it being another candidate is low),
the quality of the data upon which we base this prediction is also low, so we can
still make an error. This would concur with the intuition in section 2. In this
situation our test example may not be represented by the training set (in our
experiments this would correspond to a disfigured digit).

4 Experiments and Results

Experiments were conducted on the well known benchmark USPS database (see
e.g. [3]), which consists of 7291 training examples and 2007 test examples, where
each example is a 16 × 16 pixelated image of a digit in the range 0–9. For all
these experiments, the following kernel was used

K(x,y) =
(x · y)3

256
.

332 Craig Saunders et al.

Although this kernel does not give the best possible performance on the data
set, it is comparable and is only meant to ensure that a comparison between the
techniques presented here is a fair one.

4.1 Efficiency Comparison

In order to compare this method to the one presented in [7], we conducted
an experiment on a subset of the USPS data set. All examples of the digits 2
and 7 were extracted from the data set creating a two-class pattern recognition
problem with 1376 training examples and 345 test examples. Table 1 shows the
timings and error rates for both methods1. Note that a normal Support Vector
machine also has 3 errors on this data set (when trained with the same kernel
function). Also in this case, the 3 errors produced by the SV machine and the
two transductive methods were the same 3 examples. For the new method the
range of values which the hash function can produce (h), can be changed. The
value of h determines how many subsets each class in the training set is split
into, and results are shown for h = 2, 3, and 4. Even though the data set in this

Method Time Errors ave -log p-value

Old 5 hrs 20 mins 3 3.06
2 Splits 39 secs 4 2.51
3 Splits 50 secs 3 2.33
4 Splits 1 min 4 secs 3 2.20

Table 1. Timings, errors (out of 345), and average -log (base 10) p-values for
the different methods, on a 2-class subset of the USPS data set. Note that large
average p-values are preferable (see section 4.2)

experiment would not normally be considered to be large, the previous method
suffers a heavy time penalty. The table clearly shows that the method proposed
in this paper is more efficient, whilst retaining the same level of performance.
In order to interpret the last column of the table, notice that a -log p-value of 2
indicates a p-value of 1%.

The gap in efficiency between the two methods is due to the fact that the new
method does not have to run two optimisation problems for each test point. If
the number of test examples is increased, the time taken by the hashing method
does not alter significantly. The old method however, scales badly with any such
increase. In order to illustrate this in practice we used a subset of the data
described above. A total of 400 examples were used for training, and two test set
sizes were used: 100 examples and 345 examples. Table 1 shows the error rates
and timings of the old method, and the hashing method with 3 hash sets. Notice
the time penalty incurred by the old method as the test set is expanded.
1 Note that for the experiments we used the SVM implementation from Royal Hol-

loway. See [8] for details.

Computationally Efficient Transductive Machines 333

Method Time (100 examples) Time (345 examples)

Old 11 mins 37 secs (0 errors) 39 mins 16 secs (5 errors)
3 Splits 12 secs (0 errors) 13 secs (6 errors)

Table 2. Timings and error rates for the two methods. The training set size was
400, and two test sets of size 100 and 345 were used. The old algorithm suffers
a heavy time penalty with the increase in test set size.

4.2 Predictive Performance of the Algorithm

Experiments were also conducted on the full USPS data set, and the performance
of the algorithm was measured when each class was split into different numbers
of subsets. Table 2 summarises these results. In the case of having 5 splits,
the performance of the algorithm deteriorated. This could be due to the fact
that although by having 5 splits the training set was larger and therefore one
would expect a better decision function, the working set is greatly reduced in
size. This led to the p-values for many classes being of the same magnitude and
would therefore result in more misclassifications. As a point of comparison for

No of Splits Error Rate ave -log p-value

2 5.7% 2.46
3 5.5% 2.23
4 5.4% 2.04
5 6.0% 1.91

Table 3. Error rates for different numbers of splits of each class; the last column
gives the average minus log p-value over all incorrect classifications. The data
set used was the 10-class USPS data set.

the results shown in table 2, note that the Support Vector Machine when using
the same kernel has an error rate of 4.3%. Although for the smaller data set
used in the previous section the performance of the new method, the original
transductive method, and the Support Vector machine was identical, our quest
for efficiency on a large data set has resulted in a small loss in performance in
this case. Our aim though is to produce valid confidence and credibility values
whilst retaining good performance, we are not necessarily trying to outperform
all other methods. The table shows that the performance of the algorithm does
not suffer to a large extent, even though it provides the extra measures.

The last column in the table shows the average minus log of p-values calcu-
lated for the incorrect classifications of the new example. For relatively noise-free
data sets we expect this figure to be high, and our predictive performance to be
good. This can also be interpreted as a measure of the quality of our approx-
imation to the actual level of randomness, the higher the number, the better
our approximation. This is our main aim: to improve the p-values produced by

334 Craig Saunders et al.

the algorithm. We believe that good predictive performance will be achieved as
our p-values improve. This can already be seen in the progression from the algo-
rithm presented in [1]. Our algorithm provides better confidence and credibility2

values, and our predictive performance is also higher.
When comparing p-values in the tables it is important to note that there is

an upper bound on the ave -log p-value which can be obtained. This stems from
the fact that even if every incorrect classification is highlighted by the algorithm
as the strangest possible, then the p-value is restricted by the sample size from
which it is obtained. As an example, consider the p-values obtained in table 1. For
the old method, the strangeness measure was taken over the whole training set
(approx. 1300 examples). This would yield a maximum average (-log p-value) of
3.11. For hashing however, we are restricted to computing p-typicalness functions
over the hash set. For 3 splits, each hash set contains roughly 225 examples. This
would yield a maximum average of 2.34. For larger data sets, we would therefore
hope that this figure qould improve (as the hash set size would increase).

4.3 Confidence and Credibility Values

For the experiments, the confidence in our predictions was typically very high,
85–99%. This was due to the data set being relatively noise free. In a data set
corrupted by noise, we would expect the prediction not to be so clear cut. That
is, the noise in the data may make another classification (other than correct one)
appear to be random. The correct classification may have a large p-value (95%),
and therefore may clearly be one we predict. The confidence in the prediction
however, will be lower.

Our intuition behind the measure of credibility was that it should reflect
the “quality” of our predictions. If credibility is low, then the example looks
strange for every possible classification, and so our prediction is not as reliable.
It is therefore expected that the credibility associated with a prediction which is
later found to be incorrect, should be low in a majority of cases. This has been
observed experimentally and is illustrated by Figure 1, which displays histograms
showing the number of incorrect predictions which have credibility within a
certain range for 2,3 and 4 splits.

4.4 Rejecting Examples

It is possible to use the measures of confidence and credibility to obtain a rejec-
tion criteria for difficult examples. Suppose we pick a specific confidence thresh-
old, say 95%, and reject all predictions which fall below this level. We can then
expect that the error rate on the remaining predictions will not deviate signifi-
cantly from at most 5%. Note that over randomisations of the training set and
the test example, and over time, we would expect the error rate to be ≤ 5% (over
all examples). In this scenario however, we have a fixed (but large) training set.
Also, we are measuring the error over the non-rejected examples and not the
2 In the paper, the measure of credibility was referred to as possibility.

Computationally Efficient Transductive Machines 335

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Credibility (1=100%)

0

20

40

60

80

100

120

N
um

be
r

of
 E

xa
m

pl
es

2 Splits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Credibility (1=100%)

0

20

40

60

80

100

120

N
um

be
r

of
 E

xa
m

pl
es

3 Splits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Credibility (1=100%)

0

20

40

60

80

100

120

N
um

be
r

of
 E

xa
m

pl
es

4 Splits

Fig. 1. Credibility values for incorrectly predicted examples, when run with
different numbers of splits.

whole set. If a small number of examples are rejected however, we would not
expect the error rate to deviate significantly from 5%. Unfortunately, it is not
possible to say a-priori how many examples will be rejected. For our experiments
have selected four possible rejection criteria, these are : Confidence, Credibility,
Confidence× Credibility and (1− Confidence)− Credibility.

The first measure is obvious - we want to reject all classifications which
do not achieve a certain confidence value, therefore capping the generalisation
error. The other measures however, also control generalisation error. We may
wish to reject examples with low credibility; that is, those examples which look
unlikely given any classification. Thirdly, by simply taking the product of the two
measures, we end up with a single measure which is only high when both values
are high. Finally, the difference between typicalness values of the two likeliest
classifications can be used. Again, this is an attempt to reject samples which do
not have a clear leading candidate for the correct classification. The rejection
rate vs. generalisation error on non-rejected examples is plotted for hash sizes
2,3,4 and 5, and are shown in figure 2.

5 Discussion

In this paper we have presented an algorithm which gives both confidence and
credibility values for its predictions, on a multi-class pattern recognition problem.
This method overcomes the time penalties suffered by a previously proposed

336 Craig Saunders et al.

0 20 40 60 80 100
% of examples rejected

0

4

8

E
rr

or
 (

%
)

2 Hash Sets

Confidence
Credibility
(1−Confidence) − Credibility
Confidence * Credibility

0 20 40 60 80 100
% of examples rejected

0

4

8

E
rr

or
 (

%
)

3 Hash Sets

Confidence
Credibility
(1−Confidence) − Credibility
Confidence * Credibility

0 20 40 60 80 100
% of examples rejected

0

4

8

E
rr

or
 (

%
)

4 Hash Sets

Confidence
Credibility
(1−Confidence) − Credibility
Confidence * Credibilty

Fig. 2. Generalisation error on non-rejected examples vs. rejection rate.

algorithm, whilst retaining a comparable level of performance. This allows the
method to be used on large real-world data sets. Empirical evidence has been
presented which indicates that the confidence and credibility values produced
by the algorithm correctly reflect confidence in the prediction and the quality
of the data upon which it was based. Furthermore, in addition to providing
confidence and credibility values, the performance of the algorithm has been
shown to be comparable to that of Support Vector machines. The work here
concentrates on pattern recognition problems, but can easily be extended to
regression estimation. Both Support Vector Machine regression, and methods
such as Ridge Regression (see e.g. [2], or [6] for the kernel-based version) can be
extended to incorporate the ideas in this paper.

Acknowledgements

This work was partially supported by EPSRC GR/L35812 and GR/M15972,
and EU INTAS-93-725-ext grants. In addition we are indebted to the support
provided by IFR Ltd.

References

1. A. Gammerman, V. Vapnik, and V. Vovk. Learning by transduction. In Uncer-
tainty in Artificial Intelligence, pages 148–155, 1998. 325, 334

2. A. Hoerl and R.W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970. 336

3. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. J. Jackel. “Handwritten digit recognition with back-propagation network”.
Advances in Neural Information Processing Systems, pages 396–404, 1990. 331

4. M. Li and P. Vitanyi. An Introduction to Kolmogorov Compexity and Its Applica-
tions. Springer, 1997. 326

5. P. Martin-Löf. The definition of random sequences. Information and Control,
1966.

Computationally Efficient Transductive Machines 337

6. C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm
in dual variables. In ICML ’98. Proceedings of the 15th International Conference
on Machine Learning, pages 515–521. Morgan Kaufmann, 1998. 336

7. C. Saunders, A. Gammerman, and V. Vovk. Transduction with confidence and
credibility. In Proceedings of IJCAI’99, volume 2, pages 722–726, 1999. 325, 326,
328, 332

8. C. Saunders, M.O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A. Smola.
Support Vector machine - reference manual. Technical Report CSD-TR-98-03,
Royal Holloway, University of London, 1998. 332

9. B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for a given task.
In Proceedings, First International Conference on Knowledge Discovery and Data
Mining, pages 252–257. AAAI Press, 1995. 330

10. V. N. Vapnik. Statistical Learning Theory. Wiley, 1998. 325
11. V. Vovk and A. Gammerman. Algorithmic randomness theory and its applica-

tions in computer learning. Technical Report CLRC-TR-00-02, Royal Holloway,
University of London, 1999. 326

12. V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications of
algorithmic randomness. In Proceedings of ICML ’99, pages 444–453, 1999. 325,
326

Author Index

Allison, L., 56
Amamiya, M., 252

Bioch, J. C., 291

Cohen, W. W., 1

DasGupta, B., 264
Denis, F., 71
Dietterich, T. G., 13
Dowe, D. L., 56

El. Tobely, T., 252
Evgeniou, T., 306

Fernau, H., 116
Fitzgibbon, L. J., 56
Fronhöfer, B., 156

Gács, P., 41
Gammerman, A., 325
Gaur, D. R., 209
Gilleron, R., 71
Girosi, F., 316
Grieser, G., 101

Hammer, B., 264
Haraguchi, M., 166
Hirata, K., 238

Itoh, Y., 166
Itokawa, Y., 141

Krishnamurti, R., 209

Lange, S., 86, 101

Letouzey, F., 71

McCreath, E., 131
Miyahara, T., 141
Mukerhjee, S., 316

Nakamura, Y., 141
Nessel, J., 86
Nock, R., 224

Pontil, M., 306, 316
Popova, V., 291

Satoh, K., 179
Saunders, C., 325
Scheffer, T., 194
Sebban, M., 224
Shoudai, T., 141

Takimoto, E., 279
Tromp, J., 41
Tsuda, R., 252
Tsuruta, N., 252

Uchida, T., 141

Vitányi, P., 41
Vovk, V., 325

Warmuth, M. K., 279
Watanabe, O., 27

Yamamoto, A., 156
Yoshiki, Y., 252

Zeugmann, T., 101

